Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (28)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope Fluorescent Multiplex Assay (7) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope (5) Apply RNAscope filter
  • RNAscope Multiplex Fluorescent Assay (5) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope 2.5 HD Brown Assay (2) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 HD Red assay (1) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.5 LS Assay (1) Apply RNAscope 2.5 LS Assay filter
  • RNAscope Multiplex Fluorescent v2 (1) Apply RNAscope Multiplex Fluorescent v2 filter

Research area

  • Neuroscience (13) Apply Neuroscience filter
  • Cancer (7) Apply Cancer filter
  • Stem Cells (5) Apply Stem Cells filter
  • Development (2) Apply Development filter
  • Ears (2) Apply Ears filter
  • Hearing (2) Apply Hearing filter
  • ALS (1) Apply ALS filter
  • Alzheimer's Disease (1) Apply Alzheimer's Disease filter
  • Infectious Disease (1) Apply Infectious Disease filter
  • Inflammation (1) Apply Inflammation filter
  • Other: Fragile X Syndrome (1) Apply Other: Fragile X Syndrome filter
  • Other: Nanoparticles (1) Apply Other: Nanoparticles filter
  • Other: Single-cell transcriptomic profiling (1) Apply Other: Single-cell transcriptomic profiling filter
  • somatosensory function (1) Apply somatosensory function filter
  • Transcriptomics (1) Apply Transcriptomics filter

Category

  • Publications (28) Apply Publications filter
Transcriptional Programming of Human Mechanosensory Neuron Subtypes from Pluripotent Stem Cells.

Cell Rep

2020 Jan 21

Nickolls AR, Lee MM, Espinoza DF, Szczot M, Lam RM, Wang Q, Beers J, Zou J, Nguyen MQ, Solinski HJ, AlJanahi AA, Johnson KR, Ward ME, Chesler AT, B�nnemann CG
PMID: 31968264 | DOI: 10.1016/j.celrep.2019.12.062

Efficient and homogeneous in vitro generation of peripheral sensory neurons may provide a framework for novel drug screening platforms and disease models of touch and pain. We discover that, by overexpressing NGN2 and BRN3A, human pluripotent stem cells can be transcriptionally programmed to differentiate into a surprisingly uniform culture of cold- and mechano-sensing neurons. Although such a neuronal subtype is not found in mice, we identify molecular evidence for its existence in human sensory ganglia. Combining NGN2 and BRN3A programming with neural crest patterning, we produce two additional populations of sensory neurons, including a specialized touch receptor neuron subtype. Finally, we apply this system to model a rare inherited sensory disorder of touch and proprioception caused by inactivating mutations in PIEZO2. Together, these findings establish an approach to specify distinct sensory neuron subtypes in vitro, underscoring the utility of stem cell technology to capture human-specific features of physiology and disease.
Cross-species transcriptomic atlas of dorsal root ganglia reveals species-specific programs for sensory function

Nature communications

2023 Jan 23

Jung, M;Dourado, M;Maksymetz, J;Jacobson, A;Laufer, BI;Baca, M;Foreman, O;Hackos, DH;Riol-Blanco, L;Kaminker, JS;
PMID: 36690629 | DOI: 10.1038/s41467-023-36014-0

Sensory neurons of the dorsal root ganglion (DRG) are critical for maintaining tissue homeostasis by sensing and initiating responses to stimuli. While most preclinical studies of DRGs are conducted in rodents, much less is known about the mechanisms of sensory perception in primates. We generated a transcriptome atlas of mouse, guinea pig, cynomolgus monkey, and human DRGs by implementing a common laboratory workflow and multiple data-integration approaches to generate high-resolution cross-species mappings of sensory neuron subtypes. Using our atlas, we identified conserved core modules highlighting subtype-specific biological processes related to inflammatory response. We also identified divergent expression of key genes involved in DRG function, suggesting species-specific adaptations specifically in nociceptors that likely point to divergent function of nociceptors. Among these, we validated that TAFA4, a member of the druggable genome, was expressed in distinct populations of DRG neurons across species, highlighting species-specific programs that are critical for therapeutic development.
Aerosol delivery of star polymer-siRNA nanoparticles as a therapeutic strategy to inhibit lung tumor growth

Biomaterials

2022 Apr 23

Ma, Z;Wong, SW;Forgham, H;Esser, L;Lai, M;Leiske, MN;Kempe, K;Sharbeen, G;Youkhana, J;Mansfeld, F;Quinn, JF;Phillips, PA;Davis, TP;Kavallaris, M;McCarroll, JA;
PMID: 35500393 | DOI: 10.1016/j.biomaterials.2022.121539

Lung cancer is a major contributor to cancer-related death worldwide. siRNA nanomedicines are powerful tools for cancer therapeutics. However, there are challenges to overcome to increase siRNA delivery to solid tumors, including penetration of nanoparticles into a complex microenvironment following systemic delivery while avoiding rapid clearance by the reticuloendothelial system, and limited siRNA release from endosomes once inside the cell. Here we characterized cell uptake, intracellular trafficking, and gene silencing activity of miktoarm star polymer (PDMAEMA-POEGMA) nanoparticles (star nanoparticles) complexed to siRNA in lung cancer cells. We investigated the potential of nebulized star-siRNA nanoparticles to accumulate into orthotopic mouse lung tumors to inhibit expression of two genes [βIII-tubulin, Polo-Like Kinase 1 (PLK1)] which: 1) are upregulated in lung cancer cells; 2) promote tumor growth; and 3) are difficult to inhibit using chemical drugs. Star-siRNA nanoparticles internalized into lung cancer cells and escaped the endo-lysosomal pathway to inhibit target gene expression in lung cancer cells in vitro. Nebulized star-siRNA nanoparticles accumulated into lungs and silenced the expression of βIII-tubulin and PLK1 in mouse lung tumors, delaying aggressive tumor growth. These results demonstrate a proof-of-concept for aerosol delivery of star-siRNA nanoparticles as a novel therapeutic strategy to inhibit lung tumor growth.
Apc-mutant cells act as supercompetitors in intestinal tumour initiation

Nature

2021 Jun 01

van Neerven, SM;de Groot, NE;Nijman, LE;Scicluna, BP;van Driel, MS;Lecca, MC;Warmerdam, DO;Kakkar, V;Moreno, LF;Vieira Braga, FA;Sanches, DR;Ramesh, P;Ten Hoorn, S;Aelvoet, AS;van Boxel, MF;Koens, L;Krawczyk, PM;Koster, J;Dekker, E;Medema, JP;Winton, DJ;Bijlsma, MF;Morrissey, E;Léveillé, N;Vermeulen, L;
PMID: 34079128 | DOI: 10.1038/s41586-021-03558-4

A delicate equilibrium of WNT agonists and antagonists in the intestinal stem cell (ISC) niche is critical to maintaining the ISC compartment, as it accommodates the rapid renewal of the gut lining. Disruption of this balance by mutations in the tumour suppressor gene APC, which are found in approximately 80% of all human colon cancers, leads to unrestrained activation of the WNT pathway1,2. It has previously been established that Apc-mutant cells have a competitive advantage over wild-type ISCs3. Consequently, Apc-mutant ISCs frequently outcompete all wild-type stem cells within a crypt, thereby reaching clonal fixation in the tissue and initiating cancer formation. However, whether the increased relative fitness of Apc-mutant ISCs involves only cell-intrinsic features or whether Apc mutants are actively involved in the elimination of their wild-type neighbours remains unresolved. Here we show that Apc-mutant ISCs function as bona fide supercompetitors by secreting WNT antagonists, thereby inducing differentiation of neighbouring wild-type ISCs. Lithium chloride prevented the expansion of Apc-mutant clones and the formation of adenomas by rendering wild-type ISCs insensitive to WNT antagonists through downstream activation of WNT by inhibition of GSK3β. Our work suggests that boosting the fitness of healthy cells to limit the expansion of pre-malignant clones may be a powerful strategy to limit the formation of cancers in high-risk individuals.
Single-Cell Analysis of Regional Differences in Adult V-SVZ Neural Stem Cell Lineages.

Cell Rep. 2019 Jan 8;26(2):394-406.e5.

2019 Jan 08

Mizrak D, Levitin HM, Delgado AC, Crotet V, Yuan J, Chaker Z, Silva-Vargas V, Sims PA, Doetsch F.
PMID: 30625322 | DOI: 10.1016/j.celrep.2018.12.044

The ventricular-subventricular zone (V-SVZ) harbors adult neural stem cells. V-SVZ neural stem cells exhibit features of astrocytes, have a regional identity, and depending on their location in the lateral or septal wall of the lateral ventricle, generate different types of neuronal and glial progeny. We performed large-scale single-cell RNA sequencing to provide a molecular atlas of cells from the lateral and septal adult V-SVZ of male and female mice. This revealed regional and sex differences among adult V-SVZ cells. We uncovered lineage potency bias at the single-cell level among lateral and septal wall astrocytes toward neurogenesis and oligodendrogenesis, respectively. Finally, we identified transcription factor co-expression modules marking key temporal steps in neurogenic and oligodendrocyte lineage progression. Our data suggest functionally important spatial diversity in neurogenesis and oligodendrogenesis in the adult brain and reveal molecular correlates of adult NSC dormancy and lineage specialization.
The fragile X syndrome protein FMRP participates in axon guidance mediated by the Wnt/planar cell polarity pathway

Neuroscience

2022 Sep 30

Marfull-Oromí, P;Onishi, K;Zou, Y;
PMID: 36191829 | DOI: 10.1016/j.neuroscience.2022.09.018

The Planar cell polarity (PCP) pathway is known to mediate the function of the Wnt proteins in growth cone guidance. Here, we show that the PCP pathway may directly influence local protein synthesis within the growth cones. We found that FMRP interacts with Fzd3. This interaction is negatively regulated by Wnt5a, which induces FMRP phosphorylation. Knocking down FMRP via electroporating shRNAs into the dorsal spinal cord lead to a randomization of anterior-posterior turning of commissural axons, which could be rescued by a FMRP rescue construct. Using RNAscope, we found that some of the FMRP target mRNAs encoding PCP components, PRICKLE2 and Celsr2, as well as regulators of cytoskeletal dynamics and components of cytoskeleton, APC, Cfl1, Map1b, Tubb3 and Actb, are present in the commissural neuron growth cones. Our results suggest that PCP signaling may regulate growth cone guidance, at least in part, by regulating local protein synthesis in the growth cones through via an interaction between Frizzled3 and FMRP.
Star Polymer Nanomedicines─Challenges and Future Perspectives

ACS Applied Polymer Materials

2022 Sep 01

Forgham, H;Zhu, J;Qiao, R;Davis, T;
| DOI: 10.1021/acsapm.2c01291

Star polymers are structures composed of multiple functional linear arms covalently connected through a central core. The unique conformation of star polymers, with their tunable side arms and architectural plasticity, makes them well equipped to deliver pharmaceutical drugs and biologicals (peptides, nucleic acids), and design imaging agents. A great deal has been reported on the design and synthesis of star polymers, with several studies demonstrating the possibility for future translation. In this work, we have for the first time performed a review on research published over the last 5-years, focused on the translation of star polymer nanoparticles toward therapeutic application. We discuss all the important potential translational breakthroughs in the field as well as offering a perspective on how the addition of cutting-edge in vitro and in vivo models could provide us with the tools for the successful future clinical translation of star polymer nanoparticles.
Cochlear ribbon synapse maturation requires Nlgn1 and Nlgn3

iScience

2022 Jul 01

Ramirez, M;Ninoyu, Y;Miller, C;Andrade, L;Edassery, S;Bomba-Warczak, E;Ortega, B;Manor, U;Rutherford, M;Friedman, R;Savas, J;
| DOI: 10.1016/j.isci.2022.104803

Hearing depends on precise synaptic transmission between cochlear inner hair cells and spiral ganglion neurons through afferent ribbon synapses. Neuroligins (Nlgns) facilitate synapse maturation in the brain, but they have gone unstudied in the cochlea. We report Nlgn3 and Nlgn1 knockout (KO) cochleae have fewer ribbon synapses and have impaired hearing. Nlgn3 KO is more vulnerable to noise trauma with limited activity at high frequencies one day after noise. Furthermore, Nlgn3 KO cochleae have a 5-fold reduction in synapse number compared to wild type after two weeks of recovery. Double KO cochlear phenotypes are more prominent than the KOs, for example, 5-fold smaller synapses, 25% reduction in synapse density, and 30% less synaptic output. These observations indicate Nlgn3 and Nlgn1 are essential to cochlear ribbon synapse maturation and function.
NOTUM from Apc-mutant cells biases clonal competition to initiate cancer

Nature

2021 Jun 01

Flanagan, DJ;Pentinmikko, N;Luopajärvi, K;Willis, NJ;Gilroy, K;Raven, AP;Mcgarry, L;Englund, JI;Webb, AT;Scharaw, S;Nasreddin, N;Hodder, MC;Ridgway, RA;Minnee, E;Sphyris, N;Gilchrist, E;Najumudeen, AK;Romagnolo, B;Perret, C;Williams, AC;Clevers, H;Nummela, P;Lähde, M;Alitalo, K;Hietakangas, V;Hedley, A;Clark, W;Nixon, C;Kirschner, K;Jones, EY;Ristimäki, A;Leedham, SJ;Fish, PV;Vincent, JP;Katajisto, P;Sansom, OJ;
PMID: 34079124 | DOI: 10.1038/s41586-021-03525-z

The tumour suppressor APC is the most commonly mutated gene in colorectal cancer. Loss of Apc in intestinal stem cells drives the formation of adenomas in mice via increased WNT signalling1, but reduced secretion of WNT ligands increases the ability of Apc-mutant intestinal stem cells to colonize a crypt (known as fixation)2. Here we investigated how Apc-mutant cells gain a clonal advantage over wild-type counterparts to achieve fixation. We found that Apc-mutant cells are enriched for transcripts that encode several secreted WNT antagonists, with Notum being the most highly expressed. Conditioned medium from Apc-mutant cells suppressed the growth of wild-type organoids in a NOTUM-dependent manner. Furthermore, NOTUM-secreting Apc-mutant clones actively inhibited the proliferation of surrounding wild-type crypt cells and drove their differentiation, thereby outcompeting crypt cells from the niche. Genetic or pharmacological inhibition of NOTUM abrogated the ability of Apc-mutant cells to expand and form intestinal adenomas. We identify NOTUM as a key mediator during the early stages of mutation fixation that can be targeted to restore wild-type cell competitiveness and provide preventative strategies for people at a high risk of developing colorectal cancer.
Single-cell transcriptomic profiling of the mouse cochlea: An atlas for targeted therapies

Proceedings of the National Academy of Sciences of the United States of America

2023 Jun 27

Jean, P;Wong Jun Tai, F;Singh-Estivalet, A;Lelli, A;Scandola, C;Megharba, S;Schmutz, S;Roux, S;Mechaussier, S;Sudres, M;Mouly, E;Heritier, AV;Bonnet, C;Mallet, A;Novault, S;Libri, V;Petit, C;Michalski, N;
PMID: 37339214 | DOI: 10.1073/pnas.2221744120

Functional molecular characterization of the cochlea has mainly been driven by the deciphering of the genetic architecture of sensorineural deafness. As a result, the search for curative treatments, which are sorely lacking in the hearing field, has become a potentially achievable objective, particularly via cochlear gene and cell therapies. To this end, a complete inventory of cochlear cell types, with an in-depth characterization of their gene expression profiles right up to their final differentiation, is indispensable. We therefore generated a single-cell transcriptomic atlas of the mouse cochlea based on an analysis of more than 120,000 cells on postnatal day 8 (P8), during the prehearing period, P12, corresponding to hearing onset, and P20, when cochlear maturation is almost complete. By combining whole-cell and nuclear transcript analyses with extensive in situ RNA hybridization assays, we characterized the transcriptomic signatures covering nearly all cochlear cell types and developed cell type-specific markers. Three cell types were discovered; two of them contribute to the modiolus which houses the primary auditory neurons and blood vessels, and the third one consists in cells lining the scala vestibuli. The results also shed light on the molecular basis of the tonotopic gradient of the biophysical characteristics of the basilar membrane that critically underlies cochlear passive sound frequency analysis. Finally, overlooked expression of deafness genes in several cochlear cell types was also unveiled. This atlas paves the way for the deciphering of the gene regulatory networks controlling cochlear cell differentiation and maturation, essential for the development of effective targeted treatments.
Keratinocytes produce IL-17c to protect peripheral nervous systems during human HSV-2 reactivation

J Exp Med. 

2017 Jun 29

Peng T, Chanthaphavong RS, Sun S, Trigilio JA, Phasouk K, Jin L, Layton ED, Li AZ, Correnti CE, De van der Schueren W, Vazquez J, O’Day DR, Glass IA, Knipe DM, Wald A, Corey L, Zhu J.
PMID: 28663436 | DOI: 10.1084/jem.20160581

Abstract

Despite frequent herpes simplex virus (HSV) reactivation, peripheral nerve destruction and sensory anesthesia are rare. We discovered that skin biopsies obtained during asymptomatic human HSV-2 reactivation exhibit a higher density of nerve fibers relative to biopsies during virological and clinical quiescence. We evaluated the effects of HSV infection on keratinocytes, the initial target of HSV replication, to better understand this observation. Keratinocytes produced IL-17c during HSV-2 reactivation, and IL-17RE, an IL-17c-specific receptor, was expressed on nerve fibers in human skin and sensory neurons in dorsal root ganglia. In ex vivo experiments, exogenous human IL-17cprovided directional guidance and promoted neurite growth and branching in microfluidic devices. Exogenous murine IL-17c pretreatment reduced apoptosis in HSV-2-infected primary neurons. These results suggest that IL-17c is a neurotrophic cytokine that protects peripheralnerve systems during HSV reactivation. This mechanism could explain the lack of nerve damage from recurrent HSV infection and may provide insight to understanding and treating sensory peripheral neuropathies.

Dual leucine zipper kinase is required for mechanical allodynia and microgliosis after nerve injury.

Elife.

2018 Jul 03

Wlaschin JJ, Gluski JM, Nguyen E, Silberberg H, Thompson JH, Chesler AT, Le Pichon CE.
PMID: 29968565 | DOI: 10.7554/eLife.33910

Neuropathic pain resulting from nerve injury can become persistent and difficult to treat but the molecular signaling responsible for its development remains poorly described. Here, we identify the neuronal stress sensor dual leucine zipper kinase (DLK; Map3k12) as a key molecule controlling the maladaptive pathways that lead to pain following injury. Genetic or pharmacological inhibition of DLK reduces mechanical hypersensitivity in a mouse model of neuropathic pain. Furthermore, DLK inhibition also prevents the spinal cord microgliosis that results from nerve injury and arises distant from the injury site. These striking phenotypes result from the control by DLK of a transcriptional program in somatosensory neurons regulating the expression of numerous genes implicated in pain pathogenesis, including the immune gene Csf1. Thus, activation of DLK is an early event, or even the master regulator, controlling a wide variety of pathways downstream of nerve injury that ultimately lead to chronic pain.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?