Nickolls AR, Lee MM, Espinoza DF, Szczot M, Lam RM, Wang Q, Beers J, Zou J, Nguyen MQ, Solinski HJ, AlJanahi AA, Johnson KR, Ward ME, Chesler AT, B�nnemann CG
PMID: 31968264 | DOI: 10.1016/j.celrep.2019.12.062
Efficient and homogeneous in vitro generation of peripheral sensory neurons may provide a framework for novel drug screening platforms and disease models of touch and pain. We discover that, by overexpressing NGN2 and BRN3A, human pluripotent stem cells can be transcriptionally programmed to differentiate into a surprisingly uniform culture of cold- and mechano-sensing neurons. Although such a neuronal subtype is not found in mice, we identify molecular evidence for its existence in human sensory ganglia. Combining NGN2 and BRN3A programming with neural crest patterning, we produce two additional populations of sensory neurons, including a specialized touch receptor neuron subtype. Finally, we apply this system to model a rare inherited sensory disorder of touch and proprioception caused by inactivating mutations in PIEZO2. Together, these findings establish an approach to specify distinct sensory neuron subtypes in vitro, underscoring the utility of stem cell technology to capture human-specific features of physiology and disease.
Jung, M;Dourado, M;Maksymetz, J;Jacobson, A;Laufer, BI;Baca, M;Foreman, O;Hackos, DH;Riol-Blanco, L;Kaminker, JS;
PMID: 36690629 | DOI: 10.1038/s41467-023-36014-0
Sensory neurons of the dorsal root ganglion (DRG) are critical for maintaining tissue homeostasis by sensing and initiating responses to stimuli. While most preclinical studies of DRGs are conducted in rodents, much less is known about the mechanisms of sensory perception in primates. We generated a transcriptome atlas of mouse, guinea pig, cynomolgus monkey, and human DRGs by implementing a common laboratory workflow and multiple data-integration approaches to generate high-resolution cross-species mappings of sensory neuron subtypes. Using our atlas, we identified conserved core modules highlighting subtype-specific biological processes related to inflammatory response. We also identified divergent expression of key genes involved in DRG function, suggesting species-specific adaptations specifically in nociceptors that likely point to divergent function of nociceptors. Among these, we validated that TAFA4, a member of the druggable genome, was expressed in distinct populations of DRG neurons across species, highlighting species-specific programs that are critical for therapeutic development.
Ma, Z;Wong, SW;Forgham, H;Esser, L;Lai, M;Leiske, MN;Kempe, K;Sharbeen, G;Youkhana, J;Mansfeld, F;Quinn, JF;Phillips, PA;Davis, TP;Kavallaris, M;McCarroll, JA;
PMID: 35500393 | DOI: 10.1016/j.biomaterials.2022.121539
Lung cancer is a major contributor to cancer-related death worldwide. siRNA nanomedicines are powerful tools for cancer therapeutics. However, there are challenges to overcome to increase siRNA delivery to solid tumors, including penetration of nanoparticles into a complex microenvironment following systemic delivery while avoiding rapid clearance by the reticuloendothelial system, and limited siRNA release from endosomes once inside the cell. Here we characterized cell uptake, intracellular trafficking, and gene silencing activity of miktoarm star polymer (PDMAEMA-POEGMA) nanoparticles (star nanoparticles) complexed to siRNA in lung cancer cells. We investigated the potential of nebulized star-siRNA nanoparticles to accumulate into orthotopic mouse lung tumors to inhibit expression of two genes [βIII-tubulin, Polo-Like Kinase 1 (PLK1)] which: 1) are upregulated in lung cancer cells; 2) promote tumor growth; and 3) are difficult to inhibit using chemical drugs. Star-siRNA nanoparticles internalized into lung cancer cells and escaped the endo-lysosomal pathway to inhibit target gene expression in lung cancer cells in vitro. Nebulized star-siRNA nanoparticles accumulated into lungs and silenced the expression of βIII-tubulin and PLK1 in mouse lung tumors, delaying aggressive tumor growth. These results demonstrate a proof-of-concept for aerosol delivery of star-siRNA nanoparticles as a novel therapeutic strategy to inhibit lung tumor growth.
Apc-mutant cells act as supercompetitors in intestinal tumour initiation
van Neerven, SM;de Groot, NE;Nijman, LE;Scicluna, BP;van Driel, MS;Lecca, MC;Warmerdam, DO;Kakkar, V;Moreno, LF;Vieira Braga, FA;Sanches, DR;Ramesh, P;Ten Hoorn, S;Aelvoet, AS;van Boxel, MF;Koens, L;Krawczyk, PM;Koster, J;Dekker, E;Medema, JP;Winton, DJ;Bijlsma, MF;Morrissey, E;Léveillé, N;Vermeulen, L;
PMID: 34079128 | DOI: 10.1038/s41586-021-03558-4
A delicate equilibrium of WNT agonists and antagonists in the intestinal stem cell (ISC) niche is critical to maintaining the ISC compartment, as it accommodates the rapid renewal of the gut lining. Disruption of this balance by mutations in the tumour suppressor gene APC, which are found in approximately 80% of all human colon cancers, leads to unrestrained activation of the WNT pathway1,2. It has previously been established that Apc-mutant cells have a competitive advantage over wild-type ISCs3. Consequently, Apc-mutant ISCs frequently outcompete all wild-type stem cells within a crypt, thereby reaching clonal fixation in the tissue and initiating cancer formation. However, whether the increased relative fitness of Apc-mutant ISCs involves only cell-intrinsic features or whether Apc mutants are actively involved in the elimination of their wild-type neighbours remains unresolved. Here we show that Apc-mutant ISCs function as bona fide supercompetitors by secreting WNT antagonists, thereby inducing differentiation of neighbouring wild-type ISCs. Lithium chloride prevented the expansion of Apc-mutant clones and the formation of adenomas by rendering wild-type ISCs insensitive to WNT antagonists through downstream activation of WNT by inhibition of GSK3β. Our work suggests that boosting the fitness of healthy cells to limit the expansion of pre-malignant clones may be a powerful strategy to limit the formation of cancers in high-risk individuals.
Cell Rep. 2019 Jan 8;26(2):394-406.e5.
Mizrak D, Levitin HM, Delgado AC, Crotet V, Yuan J, Chaker Z, Silva-Vargas V, Sims PA, Doetsch F.
PMID: 30625322 | DOI: 10.1016/j.celrep.2018.12.044
The ventricular-subventricular zone (V-SVZ) harbors adult neural stem cells. V-SVZ neural stem cells exhibit features of astrocytes, have a regional identity, and depending on their location in the lateral or septal wall of the lateral ventricle, generate different types of neuronal and glial progeny. We performed large-scale single-cell RNA sequencing to provide a molecular atlas of cells from the lateral and septal adult V-SVZ of male and female mice. This revealed regional and sex differences among adult V-SVZ cells. We uncovered lineage potency bias at the single-cell level among lateral and septal wall astrocytes toward neurogenesis and oligodendrogenesis, respectively. Finally, we identified transcription factor co-expression modules marking key temporal steps in neurogenic and oligodendrocyte lineage progression. Our data suggest functionally important spatial diversity in neurogenesis and oligodendrogenesis in the adult brain and reveal molecular correlates of adult NSC dormancy and lineage specialization.
Marfull-Oromí, P;Onishi, K;Zou, Y;
PMID: 36191829 | DOI: 10.1016/j.neuroscience.2022.09.018
The Planar cell polarity (PCP) pathway is known to mediate the function of the Wnt proteins in growth cone guidance. Here, we show that the PCP pathway may directly influence local protein synthesis within the growth cones. We found that FMRP interacts with Fzd3. This interaction is negatively regulated by Wnt5a, which induces FMRP phosphorylation. Knocking down FMRP via electroporating shRNAs into the dorsal spinal cord lead to a randomization of anterior-posterior turning of commissural axons, which could be rescued by a FMRP rescue construct. Using RNAscope, we found that some of the FMRP target mRNAs encoding PCP components, PRICKLE2 and Celsr2, as well as regulators of cytoskeletal dynamics and components of cytoskeleton, APC, Cfl1, Map1b, Tubb3 and Actb, are present in the commissural neuron growth cones. Our results suggest that PCP signaling may regulate growth cone guidance, at least in part, by regulating local protein synthesis in the growth cones through via an interaction between Frizzled3 and FMRP.
ACS Applied Polymer Materials
Forgham, H;Zhu, J;Qiao, R;Davis, T;
| DOI: 10.1021/acsapm.2c01291
Star polymers are structures composed of multiple functional linear arms covalently connected through a central core. The unique conformation of star polymers, with their tunable side arms and architectural plasticity, makes them well equipped to deliver pharmaceutical drugs and biologicals (peptides, nucleic acids), and design imaging agents. A great deal has been reported on the design and synthesis of star polymers, with several studies demonstrating the possibility for future translation. In this work, we have for the first time performed a review on research published over the last 5-years, focused on the translation of star polymer nanoparticles toward therapeutic application. We discuss all the important potential translational breakthroughs in the field as well as offering a perspective on how the addition of cutting-edge in vitro and in vivo models could provide us with the tools for the successful future clinical translation of star polymer nanoparticles.
Ramirez, M;Ninoyu, Y;Miller, C;Andrade, L;Edassery, S;Bomba-Warczak, E;Ortega, B;Manor, U;Rutherford, M;Friedman, R;Savas, J;
| DOI: 10.1016/j.isci.2022.104803
Hearing depends on precise synaptic transmission between cochlear inner hair cells and spiral ganglion neurons through afferent ribbon synapses. Neuroligins (Nlgns) facilitate synapse maturation in the brain, but they have gone unstudied in the cochlea. We report Nlgn3 and Nlgn1 knockout (KO) cochleae have fewer ribbon synapses and have impaired hearing. Nlgn3 KO is more vulnerable to noise trauma with limited activity at high frequencies one day after noise. Furthermore, Nlgn3 KO cochleae have a 5-fold reduction in synapse number compared to wild type after two weeks of recovery. Double KO cochlear phenotypes are more prominent than the KOs, for example, 5-fold smaller synapses, 25% reduction in synapse density, and 30% less synaptic output. These observations indicate Nlgn3 and Nlgn1 are essential to cochlear ribbon synapse maturation and function.
NOTUM from Apc-mutant cells biases clonal competition to initiate cancer
Flanagan, DJ;Pentinmikko, N;Luopajärvi, K;Willis, NJ;Gilroy, K;Raven, AP;Mcgarry, L;Englund, JI;Webb, AT;Scharaw, S;Nasreddin, N;Hodder, MC;Ridgway, RA;Minnee, E;Sphyris, N;Gilchrist, E;Najumudeen, AK;Romagnolo, B;Perret, C;Williams, AC;Clevers, H;Nummela, P;Lähde, M;Alitalo, K;Hietakangas, V;Hedley, A;Clark, W;Nixon, C;Kirschner, K;Jones, EY;Ristimäki, A;Leedham, SJ;Fish, PV;Vincent, JP;Katajisto, P;Sansom, OJ;
PMID: 34079124 | DOI: 10.1038/s41586-021-03525-z
The tumour suppressor APC is the most commonly mutated gene in colorectal cancer. Loss of Apc in intestinal stem cells drives the formation of adenomas in mice via increased WNT signalling1, but reduced secretion of WNT ligands increases the ability of Apc-mutant intestinal stem cells to colonize a crypt (known as fixation)2. Here we investigated how Apc-mutant cells gain a clonal advantage over wild-type counterparts to achieve fixation. We found that Apc-mutant cells are enriched for transcripts that encode several secreted WNT antagonists, with Notum being the most highly expressed. Conditioned medium from Apc-mutant cells suppressed the growth of wild-type organoids in a NOTUM-dependent manner. Furthermore, NOTUM-secreting Apc-mutant clones actively inhibited the proliferation of surrounding wild-type crypt cells and drove their differentiation, thereby outcompeting crypt cells from the niche. Genetic or pharmacological inhibition of NOTUM abrogated the ability of Apc-mutant cells to expand and form intestinal adenomas. We identify NOTUM as a key mediator during the early stages of mutation fixation that can be targeted to restore wild-type cell competitiveness and provide preventative strategies for people at a high risk of developing colorectal cancer.
Proceedings of the National Academy of Sciences of the United States of America
Jean, P;Wong Jun Tai, F;Singh-Estivalet, A;Lelli, A;Scandola, C;Megharba, S;Schmutz, S;Roux, S;Mechaussier, S;Sudres, M;Mouly, E;Heritier, AV;Bonnet, C;Mallet, A;Novault, S;Libri, V;Petit, C;Michalski, N;
PMID: 37339214 | DOI: 10.1073/pnas.2221744120
Functional molecular characterization of the cochlea has mainly been driven by the deciphering of the genetic architecture of sensorineural deafness. As a result, the search for curative treatments, which are sorely lacking in the hearing field, has become a potentially achievable objective, particularly via cochlear gene and cell therapies. To this end, a complete inventory of cochlear cell types, with an in-depth characterization of their gene expression profiles right up to their final differentiation, is indispensable. We therefore generated a single-cell transcriptomic atlas of the mouse cochlea based on an analysis of more than 120,000 cells on postnatal day 8 (P8), during the prehearing period, P12, corresponding to hearing onset, and P20, when cochlear maturation is almost complete. By combining whole-cell and nuclear transcript analyses with extensive in situ RNA hybridization assays, we characterized the transcriptomic signatures covering nearly all cochlear cell types and developed cell type-specific markers. Three cell types were discovered; two of them contribute to the modiolus which houses the primary auditory neurons and blood vessels, and the third one consists in cells lining the scala vestibuli. The results also shed light on the molecular basis of the tonotopic gradient of the biophysical characteristics of the basilar membrane that critically underlies cochlear passive sound frequency analysis. Finally, overlooked expression of deafness genes in several cochlear cell types was also unveiled. This atlas paves the way for the deciphering of the gene regulatory networks controlling cochlear cell differentiation and maturation, essential for the development of effective targeted treatments.
Peng T, Chanthaphavong RS, Sun S, Trigilio JA, Phasouk K, Jin L, Layton ED, Li AZ, Correnti CE, De van der Schueren W, Vazquez J, O’Day DR, Glass IA, Knipe DM, Wald A, Corey L, Zhu J.
PMID: 28663436 | DOI: 10.1084/jem.20160581
Abstract
Despite frequent herpes simplex virus (HSV) reactivation, peripheral nerve destruction and sensory anesthesia are rare. We discovered that skin biopsies obtained during asymptomatic human HSV-2 reactivation exhibit a higher density of nerve fibers relative to biopsies during virological and clinical quiescence. We evaluated the effects of HSV infection on keratinocytes, the initial target of HSV replication, to better understand this observation. Keratinocytes produced IL-17c during HSV-2 reactivation, and IL-17RE, an IL-17c-specific receptor, was expressed on nerve fibers in human skin and sensory neurons in dorsal root ganglia. In ex vivo experiments, exogenous human IL-17cprovided directional guidance and promoted neurite growth and branching in microfluidic devices. Exogenous murine IL-17c pretreatment reduced apoptosis in HSV-2-infected primary neurons. These results suggest that IL-17c is a neurotrophic cytokine that protects peripheralnerve systems during HSV reactivation. This mechanism could explain the lack of nerve damage from recurrent HSV infection and may provide insight to understanding and treating sensory peripheral neuropathies.
Wlaschin JJ, Gluski JM, Nguyen E, Silberberg H, Thompson JH, Chesler AT, Le Pichon CE.
PMID: 29968565 | DOI: 10.7554/eLife.33910
Neuropathic pain resulting from nerve injury can become persistent and difficult to treat but the molecular signaling responsible for its development remains poorly described. Here, we identify the neuronal stress sensor dual leucine zipper kinase (DLK; Map3k12) as a key molecule controlling the maladaptive pathways that lead to pain following injury. Genetic or pharmacological inhibition of DLK reduces mechanical hypersensitivity in a mouse model of neuropathic pain. Furthermore, DLK inhibition also prevents the spinal cord microgliosis that results from nerve injury and arises distant from the injury site. These striking phenotypes result from the control by DLK of a transcriptional program in somatosensory neurons regulating the expression of numerous genes implicated in pain pathogenesis, including the immune gene Csf1. Thus, activation of DLK is an early event, or even the master regulator, controlling a wide variety of pathways downstream of nerve injury that ultimately lead to chronic pain.