Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (36)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope Fluorescent Multiplex Assay (13) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope Multiplex Fluorescent Assay (10) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope (4) Apply RNAscope filter
  • Basescope (1) Apply Basescope filter
  • RNAscope 2.0 Assay (1) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Red assay (1) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope Multiplex Fluorescent v2 (1) Apply RNAscope Multiplex Fluorescent v2 filter

Research area

  • Neuroscience (28) Apply Neuroscience filter
  • Cancer (2) Apply Cancer filter
  • Inflammation (2) Apply Inflammation filter
  • Stem Cells (2) Apply Stem Cells filter
  • ALS (1) Apply ALS filter
  • Alzheimer's Disease (1) Apply Alzheimer's Disease filter
  • Development (1) Apply Development filter
  • diabetes (1) Apply diabetes filter
  • Diet (1) Apply Diet filter
  • Ears (1) Apply Ears filter
  • Hearing (1) Apply Hearing filter
  • Infectious Disease (1) Apply Infectious Disease filter
  • Metabolism (1) Apply Metabolism filter
  • Other: Fragile X Syndrome (1) Apply Other: Fragile X Syndrome filter
  • Other: Metabolism (1) Apply Other: Metabolism filter
  • Other: Nanoparticles (1) Apply Other: Nanoparticles filter
  • Progressive Supranuclear Palsy (1) Apply Progressive Supranuclear Palsy filter
  • somatosensory function (1) Apply somatosensory function filter
  • Transcriptomics (1) Apply Transcriptomics filter

Category

  • Publications (36) Apply Publications filter
The fragile X syndrome protein FMRP participates in axon guidance mediated by the Wnt/planar cell polarity pathway

Neuroscience

2022 Sep 30

Marfull-Oromí, P;Onishi, K;Zou, Y;
PMID: 36191829 | DOI: 10.1016/j.neuroscience.2022.09.018

The Planar cell polarity (PCP) pathway is known to mediate the function of the Wnt proteins in growth cone guidance. Here, we show that the PCP pathway may directly influence local protein synthesis within the growth cones. We found that FMRP interacts with Fzd3. This interaction is negatively regulated by Wnt5a, which induces FMRP phosphorylation. Knocking down FMRP via electroporating shRNAs into the dorsal spinal cord lead to a randomization of anterior-posterior turning of commissural axons, which could be rescued by a FMRP rescue construct. Using RNAscope, we found that some of the FMRP target mRNAs encoding PCP components, PRICKLE2 and Celsr2, as well as regulators of cytoskeletal dynamics and components of cytoskeleton, APC, Cfl1, Map1b, Tubb3 and Actb, are present in the commissural neuron growth cones. Our results suggest that PCP signaling may regulate growth cone guidance, at least in part, by regulating local protein synthesis in the growth cones through via an interaction between Frizzled3 and FMRP.
Star Polymer Nanomedicines─Challenges and Future Perspectives

ACS Applied Polymer Materials

2022 Sep 01

Forgham, H;Zhu, J;Qiao, R;Davis, T;
| DOI: 10.1021/acsapm.2c01291

Star polymers are structures composed of multiple functional linear arms covalently connected through a central core. The unique conformation of star polymers, with their tunable side arms and architectural plasticity, makes them well equipped to deliver pharmaceutical drugs and biologicals (peptides, nucleic acids), and design imaging agents. A great deal has been reported on the design and synthesis of star polymers, with several studies demonstrating the possibility for future translation. In this work, we have for the first time performed a review on research published over the last 5-years, focused on the translation of star polymer nanoparticles toward therapeutic application. We discuss all the important potential translational breakthroughs in the field as well as offering a perspective on how the addition of cutting-edge in vitro and in vivo models could provide us with the tools for the successful future clinical translation of star polymer nanoparticles.
Cochlear ribbon synapse maturation requires Nlgn1 and Nlgn3

iScience

2022 Jul 01

Ramirez, M;Ninoyu, Y;Miller, C;Andrade, L;Edassery, S;Bomba-Warczak, E;Ortega, B;Manor, U;Rutherford, M;Friedman, R;Savas, J;
| DOI: 10.1016/j.isci.2022.104803

Hearing depends on precise synaptic transmission between cochlear inner hair cells and spiral ganglion neurons through afferent ribbon synapses. Neuroligins (Nlgns) facilitate synapse maturation in the brain, but they have gone unstudied in the cochlea. We report Nlgn3 and Nlgn1 knockout (KO) cochleae have fewer ribbon synapses and have impaired hearing. Nlgn3 KO is more vulnerable to noise trauma with limited activity at high frequencies one day after noise. Furthermore, Nlgn3 KO cochleae have a 5-fold reduction in synapse number compared to wild type after two weeks of recovery. Double KO cochlear phenotypes are more prominent than the KOs, for example, 5-fold smaller synapses, 25% reduction in synapse density, and 30% less synaptic output. These observations indicate Nlgn3 and Nlgn1 are essential to cochlear ribbon synapse maturation and function.
Keratinocytes produce IL-17c to protect peripheral nervous systems during human HSV-2 reactivation

J Exp Med. 

2017 Jun 29

Peng T, Chanthaphavong RS, Sun S, Trigilio JA, Phasouk K, Jin L, Layton ED, Li AZ, Correnti CE, De van der Schueren W, Vazquez J, O’Day DR, Glass IA, Knipe DM, Wald A, Corey L, Zhu J.
PMID: 28663436 | DOI: 10.1084/jem.20160581

Abstract

Despite frequent herpes simplex virus (HSV) reactivation, peripheral nerve destruction and sensory anesthesia are rare. We discovered that skin biopsies obtained during asymptomatic human HSV-2 reactivation exhibit a higher density of nerve fibers relative to biopsies during virological and clinical quiescence. We evaluated the effects of HSV infection on keratinocytes, the initial target of HSV replication, to better understand this observation. Keratinocytes produced IL-17c during HSV-2 reactivation, and IL-17RE, an IL-17c-specific receptor, was expressed on nerve fibers in human skin and sensory neurons in dorsal root ganglia. In ex vivo experiments, exogenous human IL-17cprovided directional guidance and promoted neurite growth and branching in microfluidic devices. Exogenous murine IL-17c pretreatment reduced apoptosis in HSV-2-infected primary neurons. These results suggest that IL-17c is a neurotrophic cytokine that protects peripheralnerve systems during HSV reactivation. This mechanism could explain the lack of nerve damage from recurrent HSV infection and may provide insight to understanding and treating sensory peripheral neuropathies.

Dual leucine zipper kinase is required for mechanical allodynia and microgliosis after nerve injury.

Elife.

2018 Jul 03

Wlaschin JJ, Gluski JM, Nguyen E, Silberberg H, Thompson JH, Chesler AT, Le Pichon CE.
PMID: 29968565 | DOI: 10.7554/eLife.33910

Neuropathic pain resulting from nerve injury can become persistent and difficult to treat but the molecular signaling responsible for its development remains poorly described. Here, we identify the neuronal stress sensor dual leucine zipper kinase (DLK; Map3k12) as a key molecule controlling the maladaptive pathways that lead to pain following injury. Genetic or pharmacological inhibition of DLK reduces mechanical hypersensitivity in a mouse model of neuropathic pain. Furthermore, DLK inhibition also prevents the spinal cord microgliosis that results from nerve injury and arises distant from the injury site. These striking phenotypes result from the control by DLK of a transcriptional program in somatosensory neurons regulating the expression of numerous genes implicated in pain pathogenesis, including the immune gene Csf1. Thus, activation of DLK is an early event, or even the master regulator, controlling a wide variety of pathways downstream of nerve injury that ultimately lead to chronic pain.

A genetic tool for the longitudinal study of a subset of post-inflammatory reactive astrocytes

Cell reports methods

2022 Aug 22

Agnew-Svoboda, W;Ubina, T;Figueroa, Z;Wong, YC;Vizcarra, EA;Roebini, B;Wilson, EH;Fiacco, TA;Riccomagno, MM;
PMID: 36046623 | DOI: 10.1016/j.crmeth.2022.100276

Astrocytes are vital support cells that ensure proper brain function. In brain disease, astrocytes reprogram into a reactive state that alters many of their cellular roles. A long-standing question in the field is whether downregulation of reactive astrocyte (RA) markers during resolution of inflammation is because these astrocytes revert back to a non-reactive state or die and are replaced. This has proven difficult to answer mainly because existing genetic tools cannot distinguish between healthy versus RAs. Here we describe the generation of an inducible genetic tool that can be used to specifically target and label a subset of RAs. Longitudinal analysis of an acute inflammation model using this tool revealed that the previously observed downregulation of RA markers after inflammation is likely due to changes in gene expression and not because of cell death. Our findings suggest that cellular changes associated with astrogliosis after acute inflammation are largely reversible.
Anthrax toxins regulate pain signaling and can deliver molecular cargoes into ANTXR2+ DRG sensory neurons

Nature neuroscience

2021 Dec 20

Yang, NJ;Isensee, J;Neel, DV;Quadros, AU;Zhang, HB;Lauzadis, J;Liu, SM;Shiers, S;Belu, A;Palan, S;Marlin, S;Maignel, J;Kennedy-Curran, A;Tong, VS;Moayeri, M;Röderer, P;Nitzsche, A;Lu, M;Pentelute, BL;Brüstle, O;Tripathi, V;Foster, KA;Price, TJ;Collier, RJ;Leppla, SH;Puopolo, M;Bean, BP;Cunha, TM;Hucho, T;Chiu, IM;
PMID: 34931070 | DOI: 10.1038/s41593-021-00973-8

Bacterial products can act on neurons to alter signaling and function. In the present study, we found that dorsal root ganglion (DRG) sensory neurons are enriched for ANTXR2, the high-affinity receptor for anthrax toxins. Anthrax toxins are composed of protective antigen (PA), which binds to ANTXR2, and the protein cargoes edema factor (EF) and lethal factor (LF). Intrathecal administration of edema toxin (ET (PA + EF)) targeted DRG neurons and induced analgesia in mice. ET inhibited mechanical and thermal sensation, and pain caused by formalin, carrageenan or nerve injury. Analgesia depended on ANTXR2 expressed by Nav1.8+ or Advillin+ neurons. ET modulated protein kinase A signaling in mouse sensory and human induced pluripotent stem cell-derived sensory neurons, and attenuated spinal cord neurotransmission. We further engineered anthrax toxins to introduce exogenous protein cargoes, including botulinum toxin, into DRG neurons to silence pain. Our study highlights interactions between a bacterial toxin and nociceptors, which may lead to the development of new pain therapeutics.
Astrocyte-Secreted Glypican 4 Regulates Release of Neuronal Pentraxin 1 from Axons to Induce Functional Synapse Formation.

Neuron.

2017 Oct 11

Farhy-Tselnicker I, van Casteren ACM, Lee A, Chang VT, Aricescu AR, Allen NJ.
PMID: 29024665 | DOI: 10.1016/j.neuron.2017.09.053

The generation of precise synaptic connections between developing neurons is critical to the formation of functional neural circuits. Astrocyte-secreted glypican 4 induces formation of active excitatory synapses by recruiting AMPA glutamate receptors to the postsynaptic cell surface. We now identify the molecular mechanism of how glypican 4 exerts its effect. Glypican 4 induces release of the AMPA receptor clustering factor neuronal pentraxin 1 from presynaptic terminals by signaling through presynaptic protein tyrosine phosphatase receptor δ. Pentraxin then accumulates AMPA receptors on the postsynaptic terminal forming functional synapses. Our findings reveal a signaling pathway that regulates synaptic activity during central nervous system development and demonstrates a role for astrocytes as organizers of active synaptic connections by coordinating both pre and post synaptic neurons. As mutations in glypicans are associated with neurological disorders, such as autism and schizophrenia, this signaling cascade offers new avenues to modulate synaptic function in disease.

The Aging Astrocyte Transcriptome from Multiple Regions of the Mouse Brain

Cell Rep.

2018 Jan 02

Boisvert MM, Erikson GA, Shokhirev MN, Allen NJ.
PMID: 29298427 | DOI: 10.1016/j.celrep.2017.12.039

Aging brains undergo cognitive decline, associated with decreased neuronal synapse number and function and altered metabolism. Astrocytes regulate neuronal synapse formation and function in development and adulthood, but whether these properties change during aging, contributing to neuronal dysfunction, is unknown. We addressed this by generating aged and adult astrocyte transcriptomes from multiple mouse brain regions. These data provide a comprehensive RNA-seq database of adult and aged astrocyte gene expression, available online as a resource. We identify astrocyte genes altered by aging across brain regions and regionally unique aging changes. Aging astrocytes show minimal alteration of homeostatic and neurotransmission-regulating genes. However, aging astrocytes upregulate genes that eliminate synapses and partially resemble reactive astrocytes. We further identified heterogeneous expression of synapse-regulating genes between astrocytes from different cortical regions. We find that alterations to astrocytes in aging create an environment permissive to synapse elimination and neuronal damage, potentially contributing to aging-associated cognitive decline.

An Input-Specific Orphan Receptor GPR158-HSPG Interaction Organizes Hippocampal Mossy Fiber-CA3 Synapses

Neuron. 2018 Sep 21.

2018 Oct 02

Condomitti G, Wierda KD, Schroeder A, Rubio SE, Vennekens KM, Orlandi C, Martemyanov KA, Gounko NV, Savas JN, de Wit J.
PMID: 30290982 | DOI: 10.1016/j.neuron.2018.08.038

Pyramidal neuron dendrites integrate synaptic input from multiple partners. Different inputs converging on the same dendrite have distinct structural and functional features, but the molecular mechanisms organizing input-specific properties are poorly understood. We identify the orphan receptor GPR158 as a binding partner for the heparan sulfate proteoglycan (HSPG) glypican 4 (GPC4). GPC4 is enriched on hippocampal granule cell axons (mossy fibers), whereas postsynaptic GPR158 is restricted to the proximal segment of CA3 apical dendrites receiving mossy fiber input. GPR158-induced presynaptic differentiation in contacting axons requires cell-surface GPC4 and the co-receptor LAR. Loss of GPR158 increases mossy fiber synapse density but disrupts bouton morphology, impairs ultrastructural organization of active zone and postsynaptic density, and reduces synaptic strength of this connection, while adjacent inputs on the same dendrite are unaffected. Our work identifies an input-specific HSPG-GPR158 interaction that selectively organizes synaptic architecture and function of developing mossy fiber-CA3 synapses in the hippocampus.

Nppb Neurons Are Sensors of Mast Cell-Induced Itch

Cell Rep

2019 Mar 26

Solinski HJ, Kriegbaum MC, Tseng PY, Earnest TW, Gu X, Barik A, Chesler AT and Hoon MA
PMID: 30917312 | DOI: 10.1016/j.celrep.2019.02.089

Itch is an unpleasant skin sensation that can be triggered by exposure to many chemicals, including those released by mast cells. The natriuretic polypeptide b (Nppb)-expressing class of sensory neurons, when activated, elicits scratching responses in mice, but it is unclear which itch-inducing agents stimulate these cells and the receptors involved. Here, we identify receptors expressed by Nppb neurons and demonstrate the functional importance of these receptors as sensors of endogenous pruritogens released by mast cells. Our search for receptors in Nppb neurons reveals that they express leukotriene, serotonin, and sphingosine-1-phosphate receptors. Targeted cell ablation, calcium imaging of primary sensory neurons, and conditional receptor knockout studies demonstrate that these receptors induce itch by the direct stimulation of Nppb neurons and neurotransmission through the canonical gastrin-releasing peptide (GRP)-dependent spinal cord itch pathway. Together, our results define a molecular and cellular pathway for mast cell-induced itch.
Familial Alzheimer's disease-associated PSEN1 mutations affect neurodevelopment through increased Notch signaling

Stem cell reports

2023 Jun 08

Hurley, EM;Mozolewski, P;Dobrowolski, R;Hsieh, J;
PMID: 37352850 | DOI: 10.1016/j.stemcr.2023.05.018

Alzheimer's disease (AD) is the most common neurodegenerative disorder, but its root cause may lie in neurodevelopment. PSEN1 mutations cause the majority of familial AD, potentially by disrupting proper Notch signaling, causing early unnoticed cellular changes that affect later AD progression. While rodent models are useful for modeling later stages of AD, human induced pluripotent stem cell-derived cortical spheroids (hCSs) allow access to studying the human cortex at the cellular level over the course of development. Here, we show that the PSEN1 L435F heterozygous mutation affects hCS development, increasing size, increasing progenitors, and decreasing post-mitotic neurons as a result of increased Notch target gene expression during early hCS development. We also show altered Aβ expression and neuronal activity at later hCS stages. These results contrast previous findings, showing how individual PSEN1 mutations may differentially affect neurodevelopment and may give insight into fAD progression to provide earlier time points for more effective treatments.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?