Tuong, ZK;Loudon, KW;Berry, B;Richoz, N;Jones, J;Tan, X;Nguyen, Q;George, A;Hori, S;Field, S;Lynch, AG;Kania, K;Coupland, P;Babbage, A;Grenfell, R;Barrett, T;Warren, AY;Gnanapragasam, V;Massie, C;Clatworthy, MR;
PMID: 34936871 | DOI: 10.1016/j.celrep.2021.110132
The prostate gland produces prostatic fluid, high in zinc and citrate and essential for the maintenance of spermatozoa. Prostate cancer is a common condition with limited treatment efficacy in castration-resistant metastatic disease, including with immune checkpoint inhibitors. Using single-cell RNA-sequencing to perform an unbiased assessment of the cellular landscape of human prostate, we identify a subset of tumor-enriched androgen receptor-negative luminal epithelial cells with increased expression of cancer-associated genes. We also find a variety of innate and adaptive immune cells in normal prostate that were transcriptionally perturbed in prostate cancer. An exception is a prostate-specific, zinc transporter-expressing macrophage population (MAC-MT) that contributes to tissue zinc accumulation in homeostasis but shows enhanced inflammatory gene expression in tumors, including T cell-recruiting chemokines. Remarkably, enrichment of the MAC-MT signature in cancer biopsies is associated with improved disease-free survival, suggesting beneficial antitumor functions.
Herschke, F;Li, C;Zhu, R;Han, Q;Wu, Q;Lu, Q;Barale-Thomas, E;De Jonghe, S;Lin, TI;De Creus, A;
PMID: 34718044 | DOI: 10.1016/j.antiviral.2021.105196
JNJ-64794964 (JNJ-4964/AL-034/TQ-A3334), an oral toll-like receptor 7 agonist, is being investigated for the treatment of chronic hepatitis B (CHB), a condition with a high unmet medical need. The anti-hepatitis B (HBV) activity of JNJ-4964 was assessed preclinically in an adeno-associated virus vector expressing HBV (AAV/HBV) mouse model. Mice were treated orally with 2, 6 or 20 mg/kg of JNJ-4964 once-per-week for 12 weeks and then followed up for 4 weeks. At 6 mg/kg, a partial decrease in plasma HBV-DNA and plasma hepatitis B surface antigen (HBsAg) were observed, and anti-HBs antibodies and HBsAg-specific T cells were observed in 1/8 animals. At 20 mg/kg, plasma HBV-DNA and HBsAg levels were undetectable for all animals 3 weeks after start of treatment, with no rebound observed 4 weeks after JNJ-4964 treatment was stopped. High anti-HBs antibody levels were observed until 4 weeks after JNJ-4964 treatment was stopped. In parallel, HBsAg-specific immunoglobulin G-producing B cells and interferon-γ-producing CD4+ T cells were detected in the spleen. In 2/4 animals, liver HBV-DNA and HBV-RNA levels, and liver hepatitis B core antigen expression dropped 4 weeks after JNJ-4964 treatment-stop. In these animals, HBsAg-specific CD8+ T cells were detectable. Throughout the study, normal levels of alanine aminotransferase were observed, with no hepatocyte cell death (end of treatment and 4 weeks later) and minimal infiltrations of B and T cells into the liver, suggesting induction of cytokine-mediated, non-cytolytic mechanisms.
Maidji E, Moreno ME, Rivera JM, Joshi P, Galkina SA, Kosikova G, Somsouk M, Stoddart CA.
PMID: - | DOI: 10.3390/v11030256
Although antiretroviral therapy (ART) greatly suppresses HIV replication, lymphoid tissues remain a sanctuary site where the virus may replicate. Tracking the earliest steps of HIV spread from these cellular reservoirs after drug cessation is pivotal for elucidating how infection can be prevented. In this study, we developed an in vivo model of HIV persistence in which viral replication in the lymphoid compartments of humanized mice was inhibited by the HIV reverse transcriptase inhibitor 4′-ethynyl-2-fluoro-2′-deoxyadenosine (EFdA) to very low levels, which recapitulated ART-suppression in HIV-infected individuals. Using a combination of RNAscope in situ hybridization (ISH) and immunohistochemistry (IHC), we quantitatively investigated the distribution of HIV in the lymphoid tissues of humanized mice during active infection, EFdA suppression, and after drug cessation. The lymphoid compartments of EFdA-suppressed humanized mice harbored very rare transcription/translation-competent HIV reservoirs that enable viral rebound. Our data provided the visualization and direct measurement of the early steps of HIV reservoir expansion within anatomically intact lymphoid tissues soon after EFdA cessation and suggest a strategy to enhance therapeutic approaches aimed at eliminating the HIV reservoir.
Chang HL Bamodu OA Ong JR, Lee WH, Yeh CT, Tsai JT
PMID: 32326045 | DOI: 10.3390/cells9041020
BACKGROUND:
With recorded under-performance of current standard therapeutic strategies as highlighted by high rates of post-treatment (resection or local ablation) recurrence, resistance to chemotherapy, poor overall survival, and an increasing global incidence, hepatocellular carcinoma (HCC) constitutes a medical challenge. Accumulating evidence implicates the presence of HCC stem cells (HCC-SCs) in HCC development, drug-resistance, recurrence, and progression. Therefore, treatment strategies targeting both HCC-SCs and non-CSCs are essential.
METHODS:
Recently, there has been an increasing suggestion of MALAT1 oncogenic activity in HCC; however, its role in HCC stemness remains unexplored. Herein, we investigated the probable role of MALAT1 in the SCs-like phenotype of HCC and explored likely molecular mechanisms by which MALAT1 modulates HCC-SCs-like and metastatic phenotypes.
RESULTS:
We showed that relative to normal, cirrhotic, or dysplastic liver conditions, MALAT1 was aberrantly expressed in HCC, similar to its overexpression in Huh7, Mahlavu, and SK-Hep1 HCC cells lines, compared to the normal liver cell line THLE-2. We also demonstrated a positive correlation between MALAT1 expression and poor cell differentiation status in HCC using RNAscope. Interestingly, we demonstrated that shRNA-mediated silencing of MALAT1 concomitantly downregulated the expression levels of ?-catenin, Stat3, c-Myc, CK19, vimentin, and Twist1 proteins, inhibited HCC oncogenicity, and significantly suppressed the HCC-SCs-related dye-effluxing potential of HCC cells and reduced their ALDH-1 activity, partially due to inhibited MALAT1-?-catenin interaction. Additionally, using TOP/FOP (TCL/LEF-Firefly luciferase) Flash, RT-PCR, and western blot assays, we showed that silencing MALAT1 downregulates ?-catenin expression, dysregulates the canonical Wnt signaling pathway, and consequently attenuates HCC tumorsphere formation efficiency, with concurrent reduction in CD133+ and CD90+ HCC cell population, and inhibits tumor growth in SK-Hep1-bearing mice. Conclusions: Taken together, our data indicate that MALAT1/Wnt is a targetable molecular candidate, and the therapeutic targeting of MALAT1/Wnt may constitute a novel promising anticancer strategy for HCC treatment.
bioRxiv : the preprint server for biology
Hazra, R;Utama, R;Naik, P;Dobin, A;Spector, DL;
PMID: 36711961 | DOI: 10.1101/2023.01.20.524887
Glioblastoma multiforme (GBM) is an aggressive, heterogeneous grade IV brain tumor. Glioblastoma stem cells (GSCs) initiate the tumor and are known culprits of therapy resistance. Mounting evidence has demonstrated a regulatory role of long non-coding RNAs (lncRNAs) in various biological processes, including pluripotency, differentiation, and tumorigenesis. A few studies have suggested that aberrant expression of lncRNAs is associated with GSCs. However, a comprehensive single-cell analysis of the GSC-associated lncRNA transcriptome has not been carried out. Here, we analyzed recently published single-cell RNA-sequencing datasets of adult human GBM tumors, GBM organoids, GSC-enriched GBM tumors, and developing human brains to identify lncRNAs highly expressed in GBM. To categorize GSC populations in the GBM tumors, we used the GSC marker genes SOX2, PROM1, FUT4, and L1CAM. We found three major GSC population clusters: radial glia, oligodendrocyte progenitor cells, and neurons. We found 10â€"100 lncRNAs significantly enriched in different GSC populations. We also validated the level of expression and localization of several GSC-enriched lncRNAs using qRT-PCR, single-molecule RNA FISH, and sub-cellular fractionation. We found that the radial glia GSC-enriched lncRNA PANTR1 is highly expressed in GSC lines and is localized to both the cytoplasmic and nuclear fractions. In contrast, the neuronal GSC-enriched lncRNAs LINC01563 and MALAT1 are highly enriched in the nuclear fraction of GSCs. Together, this study identified a panel of uncharacterized GSC-specific lncRNAs. These findings set the stage for future in-depth studies to examine their role in GBM pathology and their potential as biomarkers and/or therapeutic targets in GBM.
Immunology and cell biology
Mekhael, O;Revill, SD;Hayat, AI;Cass, SP;MacDonald, K;Vierhout, M;Ayoub, A;Reihani, A;Padwal, M;Imani, J;Ayaub, E;Yousof, T;Dvorkin-Gheva, A;Rullo, A;Hirota, JA;Richards, CD;Bridgewater, D;Stämpfli, MR;Hambly, N;Naqvi, A;Kolb, MR;Ask, K;
PMID: 36862017 | DOI: 10.1111/imcb.12637
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fibrotic interstitial lung disease of unknown etiology. The accumulation of macrophages is associated with disease pathogenesis. The unfolded protein response (UPR) has been linked to macrophage activation in pulmonary fibrosis. To date, the impact of activating transcription factor 6 alpha (ATF6α), one of the UPR mediators, on the composition and function of pulmonary macrophage subpopulations during lung injury and fibrogenesis is not fully understood. We began by examining the expression of Atf6α in IPF patients' lung single-cell RNA sequencing dataset, archived surgical lung specimens, and CD14+ circulating monocytes. To assess the impact of ATF6α on pulmonary macrophage composition and pro-fibrotic function during tissue remodelling, we conducted an in vivo myeloid-specific deletion of Atf6α. Flow cytometric assessments of pulmonary macrophages were carried out in C57BL/6 and myeloid specific ATF6α-deficient mice in the context of bleomycin-induced lung injury. Our results demonstrated that Atf6α mRNA was expressed in pro-fibrotic macrophages found in IPF patient lung and in CD14+ circulating monocytes obtained from IPF patient blood. After bleomycin administration, the myeloid-specific deletion of Atf6α altered pulmonary macrophage composition, expanding CD11b+ subpopulations with dual polarized CD38+ CD206+ expressing macrophages. Compositional changes were associated with an aggravation of fibrogenesis including increased myofibroblast and collagen deposition. Further mechanistic ex vivo investigation revealed that ATF6α was required for CHOP induction and the death of bone marrow-derived macrophages. Overall, our findings suggest a detrimental role for the ATF6α-deficient CD11b+ macrophages which had altered function during lung injury and fibrosis.This article is protected by
Garcia-Alonso, L;Lorenzi, V;Mazzeo, CI;Alves-Lopes, JP;Roberts, K;Sancho-Serra, C;Engelbert, J;Marečková, M;Gruhn, WH;Botting, RA;Li, T;Crespo, B;van Dongen, S;Kiselev, VY;Prigmore, E;Herbert, M;Moffett, A;Chédotal, A;Bayraktar, OA;Surani, A;Haniffa, M;Vento-Tormo, R;
PMID: 35794482 | DOI: 10.1038/s41586-022-04918-4
Gonadal development is a complex process that involves sex determination followed by divergent maturation into either testes or ovaries1. Historically, limited tissue accessibility, a lack of reliable in vitro models and critical differences between humans and mice have hampered our knowledge of human gonadogenesis, despite its importance in gonadal conditions and infertility. Here, we generated a comprehensive map of first- and second-trimester human gonads using a combination of single-cell and spatial transcriptomics, chromatin accessibility assays and fluorescent microscopy. We extracted human-specific regulatory programmes that control the development of germline and somatic cell lineages by profiling equivalent developmental stages in mice. In both species, we define the somatic cell states present at the time of sex specification, including the bipotent early supporting population that, in males, upregulates the testis-determining factor SRY and sPAX8s, a gonadal lineage located at the gonadal-mesonephric interface. In females, we resolve the cellular and molecular events that give rise to the first and second waves of granulosa cells that compartmentalize the developing ovary to modulate germ cell differentiation. In males, we identify human SIGLEC15+ and TREM2+ fetal testicular macrophages, which signal to somatic cells outside and inside the developing testis cords, respectively. This study provides a comprehensive spatiotemporal map of human and mouse gonadal differentiation, which can guide in vitro gonadogenesis.
Sprangers AJ, Hao L, Banga RJ, Mirkin CA.
PMID: 28026123 | DOI: 10.1002/smll.201602753
Emerging evidence indicates that long noncoding RNAs (lncRNAs) are actively involved in a number of developmental and tumorigenic processes. Here, the authors describe the first successful use of spherical nucleic acids as an effective nanoparticle platform for regulating lncRNAs in cells; specifically, for the targeted knockdown of the nuclear-retained metastasis associated lung adenocarcinoma transcript 1 (Malat1), a key oncogenic lncRNA involved in metastasis of several cancers. Utilizing the liposomal spherical nucleic acid (LSNA) constructs, the authors first explored the delivery of antisense oligonucleotides to the nucleus. A dose-dependent inhibition of Malat1 upon LSNA treatment as well as the consequent up-regulation of tumor suppressor messenger RNA associated with Malat1 knockdown are shown. These findings reveal the biologic and therapeutic potential of a LSNA-based antisense strategy in targeting disease-associated, nuclear-retained lncRNAs.
The Journal of clinical investigation
Pan, Y;Cao, S;Tang, J;Arroyo, JP;Terker, AS;Wang, Y;Niu, A;Fan, X;Wang, S;Zhang, Y;Jiang, M;Wasserman, DH;Zhang, MZ;Harris, RC;
PMID: 35499079 | DOI: 10.1172/JCI152391
Obesity-associated complications are causing increasing morbidity and mortality worldwide. Expansion of adipose tissue in obesity leads to a state of low-grade chronic inflammation and dysregulated metabolism, resulting in insulin resistance and metabolic syndrome. Adipose tissue macrophages (ATMs) accumulate in obesity and are a source of proinflammatory cytokines that further aggravate adipocyte dysfunction. Macrophages are rich sources of cyclooxygenase (COX), the rate limiting enzyme for prostaglandin E2 (PGE2) production. When mice were fed a high-fat diet (HFD), ATMs increased expression of COX-2. Selective myeloid cell COX-2 deletion resulted in increased monocyte recruitment and proliferation of ATMs, leading to increased proinflammatory ATMs with decreased phagocytic ability. There were increased weight gain and adiposity, decreased peripheral insulin sensitivity and glucose utilization, increased adipose tissue inflammation and fibrosis, and abnormal adipose tissue angiogenesis. HFD pair-feeding led to similar increases in body weight, but mice with selective myeloid cell COX-2 still exhibited decreased peripheral insulin sensitivity and glucose utilization. Selective myeloid deletion of the macrophage PGE2 receptor subtype, EP4, produced a similar phenotype, and a selective EP4 agonist ameliorated the metabolic abnormalities seen with ATM COX-2 deletion. Therefore, these studies demonstrated that an ATM COX-2/PGE2/EP4 axis plays an important role in inhibiting adipose tissue dysfunction.
Keenan, BP;McCarthy, EE;Ilano, A;Yang, H;Zhang, L;Allaire, K;Fan, Z;Li, T;Lee, DS;Sun, Y;Cheung, A;Luong, D;Chang, H;Chen, B;Marquez, J;Sheldon, B;Kelley, RK;Ye, CJ;Fong, L;
PMID: 36130508 | DOI: 10.1016/j.celrep.2022.111384
Suppressive myeloid cells can contribute to immunotherapy resistance, but their role in response to checkpoint inhibition (CPI) in anti-PD-1 refractory cancers, such as biliary tract cancer (BTC), remains elusive. We use multiplexed single-cell transcriptomic and epitope sequencing to profile greater than 200,000 peripheral blood mononuclear cells from advanced BTC patients (n = 9) and matched healthy donors (n = 8). Following anti-PD-1 treatment, CD14+ monocytes expressing high levels of immunosuppressive cytokines and chemotactic molecules (CD14CTX) increase in the circulation of patients with BTC tumors that are CPI resistant. CD14CTX can directly suppress CD4+ T cells and induce SOCS3 expression in CD4+ T cells, rendering them functionally unresponsive. The CD14CTX gene signature associates with worse survival in patients with BTC as well as in other anti-PD-1 refractory cancers. These results demonstrate that monocytes arising after anti-PD-1 treatment can induce T cell paralysis as a distinct mode of tumor-mediated immunosuppression leading to CPI resistance.
CB1 R and iNOS are distinct players promoting pulmonary fibrosis in Hermansky-Pudlak syndrome
Clinical and translational medicine
Cinar, R;Park, JK;Zawatsky, CN;Coffey, NJ;Bodine, SP;Abdalla, J;Yokoyama, T;Jourdan, T;Jay, L;Zuo, MXG;O'Brien, KJ;Huang, J;Mackie, K;Alimardanov, A;Iyer, MR;Gahl, WA;Kunos, G;Gochuico, BR;Malicdan, MCV;
PMID: 34323400 | DOI: 10.1002/ctm2.471
Hermansky-Pudlak syndrome (HPS) is a rare genetic disorder which, in its most common and severe form, HPS-1, leads to fatal adult-onset pulmonary fibrosis (PF) with no effective treatment. We evaluated the role of the endocannabinoid/CB1 R system and inducible nitric oxide synthase (iNOS) for dual-target therapeutic strategy using human bronchoalveolar lavage fluid (BALF), lung samples from patients with HPS and controls, HPS-PF patient-derived lung fibroblasts, and bleomycin-induced PF in pale ear mice (HPS1ep/ep ). We found overexpression of CB1 R and iNOS in fibrotic lungs of HPSPF patients and bleomycin-infused pale ear mice. The endocannabinoid anandamide was elevated in BALF and negatively correlated with pulmonary function parameters in HPSPF patients and pale ear mice with bleomycin-induced PF. Simultaneous targeting of CB1 R and iNOS by MRI-1867 yielded greater antifibrotic efficacy than inhibiting either target alone by attenuating critical pathologic pathways. Moreover, MRI-1867 treatment abrogated bleomycin-induced increases in lung levels of the profibrotic interleukin-11 via iNOS inhibition and reversed mitochondrial dysfunction via CB1 R inhibition. Dual inhibition of CB1 R and iNOS is an effective antifibrotic strategy for HPSPF.
Cholesterol-functionalized DNA/RNA heteroduplexes cross the blood-brain barrier and knock down genes in the rodent CNS
Nagata, T;Dwyer, CA;Yoshida-Tanaka, K;Ihara, K;Ohyagi, M;Kaburagi, H;Miyata, H;Ebihara, S;Yoshioka, K;Ishii, T;Miyata, K;Miyata, K;Powers, B;Igari, T;Yamamoto, S;Arimura, N;Hirabayashi, H;Uchihara, T;Hara, RI;Wada, T;Bennett, CF;Seth, PP;Rigo, F;Yokota, T;
PMID: 34385691 | DOI: 10.1038/s41587-021-00972-x
Achieving regulation of endogenous gene expression in the central nervous system (CNS) with antisense oligonucleotides (ASOs) administered systemically would facilitate the development of ASO-based therapies for neurological diseases. We demonstrate that DNA/RNA heteroduplex oligonucleotides (HDOs) conjugated to cholesterol or α-tocopherol at the 5' end of the RNA strand reach the CNS after subcutaneous or intravenous administration in mice and rats. The HDOs distribute throughout the brain, spinal cord and peripheral tissues and suppress the expression of four target genes by up to 90% in the CNS, whereas single-stranded ASOs conjugated to cholesterol have limited activity. Gene knockdown was observed in major CNS cell types and was greatest in neurons and microglial cells. Side effects, such as thrombocytopenia and focal brain necrosis, were limited by using subcutaneous delivery or by dividing intravenous injections. By crossing the blood-brain barrier more effectively, cholesterol-conjugated HDOs may overcome the limited efficacy of ASOs targeting the CNS without requiring intrathecal administration.