Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (159)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • (-) Remove HPV E6/E7 filter HPV E6/E7 (78)
  • Slc17a6 (77) Apply Slc17a6 filter
  • (-) Remove Axin2 filter Axin2 (74)
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope 2.0 Assay (36) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Red assay (24) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope Multiplex Fluorescent Assay (16) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope 2.5 HD Brown Assay (9) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 LS Assay (9) Apply RNAscope 2.5 LS Assay filter
  • RNAscope (7) Apply RNAscope filter
  • RNAscope Fluorescent Multiplex Assay (6) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope 2.5 HD Duplex (4) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 VS Assay (3) Apply RNAscope 2.5 VS Assay filter
  • RNAscope ISH Probe High Risk HPV (2) Apply RNAscope ISH Probe High Risk HPV filter
  • TBD (2) Apply TBD filter
  • BASEscope Assay RED (1) Apply BASEscope Assay RED filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (1) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope Multiplex Fluorescent v2 (1) Apply RNAscope Multiplex Fluorescent v2 filter

Research area

  • Cancer (94) Apply Cancer filter
  • HPV (69) Apply HPV filter
  • Infectious Disease (62) Apply Infectious Disease filter
  • Stem Cells (23) Apply Stem Cells filter
  • Development (12) Apply Development filter
  • Neuroscience (10) Apply Neuroscience filter
  • Developmental (8) Apply Developmental filter
  • Other (7) Apply Other filter
  • Stem cell (5) Apply Stem cell filter
  • Immunotherapy (2) Apply Immunotherapy filter
  • Inflammation (2) Apply Inflammation filter
  • Signalling (2) Apply Signalling filter
  • anorexia nervosa (1) Apply anorexia nervosa filter
  • Anxiety (1) Apply Anxiety filter
  • Behavior (1) Apply Behavior filter
  • Cell Biology (1) Apply Cell Biology filter
  • CGT (1) Apply CGT filter
  • Colitis (1) Apply Colitis filter
  • Covid (1) Apply Covid filter
  • Endocrinology (1) Apply Endocrinology filter
  • Liver (1) Apply Liver filter
  • Lung (1) Apply Lung filter
  • Metabolism (1) Apply Metabolism filter
  • Ophthalmology (1) Apply Ophthalmology filter
  • Other: Congenital hypopituitarism (1) Apply Other: Congenital hypopituitarism filter
  • Other: Endocrinology (1) Apply Other: Endocrinology filter
  • Other: Methods (1) Apply Other: Methods filter
  • Progenitor Cell (1) Apply Progenitor Cell filter
  • Progenitor Cells (1) Apply Progenitor Cells filter
  • Protocols (1) Apply Protocols filter
  • Pulmonary disease (1) Apply Pulmonary disease filter
  • Regeneration (1) Apply Regeneration filter
  • Sex Differences (1) Apply Sex Differences filter
  • Smooth Muscle (1) Apply Smooth Muscle filter
  • Stress (1) Apply Stress filter
  • Tumorigenesis (1) Apply Tumorigenesis filter

Category

  • Publications (159) Apply Publications filter
YAP-TEAD signaling promotes basal cell carcinoma development via a c-JUN/AP1 axis.

EMBO J.

2018 Jul 23

Maglic D, Schlegelmilch K, Dost AF, Panero R, Dill M, Calogero RA, Camargo FD.
PMID: 30037824 | DOI: 10.15252/embj.201798642

The mammalian Hippo signaling pathway, through its effectors YAP and TAZ, coerces epithelial progenitor cell expansion for appropriate tissue development or regeneration upon damage. Its ability to drive rapid tissue growth explains why many oncogenic events frequently exploit this pathway to promote cancer phenotypes. Indeed, several tumor types including basal cell carcinoma (BCC) show genetic aberrations in the Hippo (or YAP/TAZ) regulators. Here, we uncover that while YAP is dispensable for homeostatic epidermal regeneration, it is required for BCC development. Our clonal analyses further demonstrate that the few emerging Yap-null dysplasia have lower fitness and thus are diminished as they progress to invasive BCC Mechanistically, YAP depletion in BCC tumors leads to effective impairment of the JNK-JUN signaling, a well-established tumor-driving cascade. Importantly, in this context, YAP does not influence canonical Wnt or Hedgehog signaling. Overall, we reveal Hippo signaling as an independent promoter of BCC pathogenesis and thereby a viable target for drug-resistant BCC.

Divergent Routes toward Wnt and R-spondin Niche Independency during Human Gastric Carcinogenesis

Cell.

2018 Aug 09

Nanki K, Toshimitsu K, Takano A, Fujii M, Shimokawa M, Ohta Y, Matano M, Seino T, Nishikori S, Ishikawa K, Kawasaki K, Togasaki K, Takahashi S, Sukawa Y, Ishida H, Sugimoto S, Kawakubo H, Kim J, Kitagawa Y, Sekine S, Koo BK, Kanai T, Sato T.
PMID: 30096312 | DOI: 10.1016/j.cell.2018.07.027

Recent sequencing analyses have shed light on heterogeneous patterns of genomic aberrations in human gastric cancers (GCs). To explore how individual genetic events translate into cancer phenotypes, we established a biological library consisting of genetically engineered gastric organoids carrying various GC mutations and 37 patient-derived organoid lines, including rare genomically stable GCs. Phenotype analyses of GC organoids revealed divergent genetic and epigenetic routes to gain Wnt and R-spondin niche independency. An unbiased phenotype-based genetic screening identified a significant association between CDH1/TP53 compound mutations and the R-spondin independency that was functionally validated by CRISPR-based knockout. Xenografting of GC organoids further established the feasibility of Wnt-targeting therapy for Wnt-dependent GCs. Our results collectively demonstrate that multifaceted genetic abnormalities render human GCs independent of the stem cell niche and highlight the validity of the genotype-phenotype screening strategy in gaining deeper understanding of human cancers.

Single-Cell Analysis Reveals a Hair Follicle Dermal Niche Molecular Differentiation Trajectory that Begins Prior to Morphogenesis.

Dev Cell. 2018 Dec 19.

2018 Dec 19

Gupta K, Levinsohn J, Linderman G, Chen D, Sun TY, Dong D, Taketo MM, Bosenberg M, Kluger Y, Choate K, Myung P.
PMID: 30595533 | DOI: 10.1016/j.devcel.2018.11.032

Delineating molecular and cellular events that precede appendage morphogenesis has been challenging due to the inability to distinguish quantitative molecular differences between cells that lack histological distinction. The hair follicle (HF) dermal condensate (DC) is a cluster of cells critical for HF development and regeneration. Events that presage emergence of this distinctive population are poorly understood. Using unbiased single-cell RNA sequencing and in vivo methods, we infer a sequence of transcriptional states through which DC cells pass that begins prior to HF morphogenesis. Our data indicate that Wnt/β-catenin signaling is required to progress into an intermediate stage that precedes quiescence and differentiation. Further, we provide evidence that quiescent DC cells are recent progeny of selectively proliferating cells present prior to morphogenesis and that are later identified in the peri-DC zone during DC expansion. Together, these findings provide an inferred path of molecular states that lead to DC cell differentiation.
Stem cell competition driven by the Axin2-p53 axis controls brain size during murine development

Developmental cell

2023 Apr 06

Sun, XL;Chen, ZH;Guo, X;Wang, J;Ge, M;Wong, SZH;Wang, T;Li, S;Yao, M;Johnston, LA;Wu, QF;
PMID: 37054704 | DOI: 10.1016/j.devcel.2023.03.016

Cell competition acts as a quality-control mechanism that eliminates cells less fit than their neighbors to optimize organ development. Whether and how competitive interactions occur between neural progenitor cells (NPCs) in the developing brain remains unknown. Here, we show that endogenous cell competition occurs and intrinsically correlates with the Axin2 expression level during normal brain development. Induction of genetic mosaicism predisposes Axin2-deficient NPCs to behave as "losers" in mice and undergo apoptotic elimination, but homogeneous ablation of Axin2 does not promote cell death. Mechanistically, Axin2 suppresses the p53 signaling pathway at the post-transcriptional level to maintain cell fitness, and Axin2-deficient cell elimination requires p53-dependent signaling. Furthermore, mosaic Trp53 deletion confers a "winner" status to p53-deficient cells that outcompete their neighbors. Conditional loss of both Axin2 and Trp53 increases cortical area and thickness, suggesting that the Axin2-p53 axis may coordinate to survey cell fitness, regulate natural cell competition, and optimize brain size during neurodevelopment.
An MST4-pβ-CateninThr40 Signaling Axis Controls Intestinal Stem Cell and Tumorigenesis

Advanced science (Weinheim, Baden-Wurttemberg, Germany)

2021 Jul 08

Zhang, H;Lin, M;Dong, C;Tang, Y;An, L;Ju, J;Wen, F;Chen, F;Wang, M;Wang, W;Chen, M;Zhao, Y;Li, J;Hou, SX;Lin, X;Hu, L;Bu, W;Wu, D;Li, L;Jiao, S;Zhou, Z;
PMID: 34240584 | DOI: 10.1002/advs.202004850

Elevated Wnt/β-catenin signaling has been commonly associated with tumorigenesis especially colorectal cancer (CRC). Here, an MST4-pβ-cateninThr40 signaling axis essential for intestinal stem cell (ISC) homeostasis and CRC development is uncovered. In response to Wnt3a stimulation, the kinase MST4 directly phosphorylates β-catenin at Thr40 to block its Ser33 phosphorylation by GSK3β. Thus, MST4 mediates an active process that prevents β-catenin from binding to and being degraded by β-TrCP, leading to accumulation and full activation of β-catenin. Depletion of MST4 causes loss of ISCs and inhibits CRC growth. Mice bearing either MST4T178E mutation with constitutive kinase activity or β-cateninT40D mutation mimicking MST4-mediated phosphorylation show overly increased ISCs/CSCs and exacerbates CRC. Furthermore, the MST4-pβ-cateninThr40 axis is upregulated and correlated with poor prognosis of human CRC. Collectively, this work establishes a previously undefined machinery for β-catenin activation, and further reveals its function in stem cell and tumor biology, opening new opportunities for targeted therapy of CRC.
Differences in the Prevalence of Human Papillomavirus (HPV) in Head and Neck Squamous Cell Cancers by Sex, Race, Anatomic Tumor Site, and HPV Detection Method.

JAMA Oncol.

2016 Dec 08

D'Souza G, Westra WH, Wang SJ, van Zante A, Wentz A, Kluz N, Rettig E, Ryan WR, Ha PK, Kang H, Bishop J, Quon H, Kiess AP, Richmon JD, Eisele DW, Fakhry C.
PMID: 27930766 | DOI: 10.1001/jamaoncol.2016.3067

Abstract

IMPORTANCE:

Human papillomavirus (HPV) causes an increasing proportion of oropharyngeal squamous cell carcinomas (OPSCCs), particularly in white men. The prevalence of HPV among other demographic groups and other anatomic sites of HNSCC is unclear.

OBJECTIVE:

To explore the role of HPV tumor status among women and nonwhites with OPSCC and patients with nonoropharyngeal head and neck squamous cell carcinoma (non-OP HNSCC).

DESIGN, SETTING, AND PARTICIPANTS:

Retrospective cohort study at 2 tertiary academic centers including cases diagnosed 1995 through 2012, oversampled for minorities and females. A stratified random sample of 863 patients with newly diagnosed SCC of the oral cavity, oropharynx, larynx, or nasopharynx was used.

MAIN OUTCOMES AND MEASURES:

Outcomes were HPV status as measured by p16 immunohistochemical analysis, HPV16 DNA in situ hybridization (ISH), and high-risk HPV E6/E7 mRNA ISH.

RESULTS:

Of 863 patients, 551 (63.9%) were male and median age was 58 years (interquartile range, 51-68 years). Among 240 OPSCCs, 144 (60%) were p16 positive (p16+), 115 (48%) were HPV16 DNA ISH positive (ISH16+), and 134 (56%) were positive for any oncogenic HPV type (ISH+). From 1995 to 2012, the proportion of p16+ OPSCC increased significantly among women (from 29% to 77%; P = .005 for trend) and men (36% to 72%; P < .001 for trend), as well as among whites (39% to 86%; P < .001 for trend) and nonwhites (32% to 62%; P = .02 for trend). Similar results were observed for ISH+ OPSCC (P ≤ .01 for all). Among 623 non-OP HNSCCs, a higher proportion were p16+ compared with ISH positive (62 [10%] vs 30 [5%]; P = .001). A high proportion (26 of 62 [42%]) of these p16+ non-OP HNSCCs were found in sites adjacent to the oropharynx. The proportion of p16+ and ISH+ non-OP HNSCCs were similar by sex. Over time, the proportion of non-OP HNSCCs that were p16+ (or ISH+) increased among whites (P = .04 for trend) but not among nonwhites (each P > .51 for trend). Among OPSCCs, p16 had high sensitivity (100%), specificity (91%), and positive (93%) and negative predictive value (100%) for ISH positivity. In non-OP HNSCCs, p16 had lower sensitivity (83%) and positive predictive value (40%) but high specificity (94%) and negative predictive value (99%) for ISH positivity.

CONCLUSIONS AND RELEVANCE:

During 1995 through 2012, the proportion of OPSCCs caused by HPV has increased significantly. This increase was not restricted to white men but was a consistent trend for women and men, as well as for white and nonwhite racial groups. Few non-OP HNSCCs were HPV related. P16 positivity was a good surrogate for ISH+ tumor status among OPSCC, but not a good surrogate for non-OP HNSCC.

High-risk type human papillomavirus infection and p16 expression in laryngeal cancer.

Infectious Agents and Cancer

2019 Mar 05

Kiyuna A, Ikegami T, Uehara T, Hirakawa H, Agena S, Uezato J, Kondo S, Yamashita Y, Deng Z, Maeda H, Suzuki M, Ganaha A.
PMID: - | DOI: 10.1186/s13027-019-0224-y

Background

Oropharyngeal cancers associated with high-risk type human papillomavirus (HR-HPV) infection have better prognosis than virus negative cancers. Similarly, the HPV status in laryngeal cancer (LC) may be associated with better outcome.

Methods

Samples from 88 patients with LC were investigated using the polymerase chain reaction (PCR) and p16 immunohistochemistry for HR-HPV analysis. The cut-off point for p16 overexpression was diffuse (≥75%) tumor expression with at least moderate (+ 2/3) staining intensity.

Results

The 5-year cumulative survival (CS) rate was 80.7% in all patients with LC. According to a combination of HR-HPV DNA status and p16 overexpression, subjects with LC were divided into four groups: HR-HPV DNA-positive/p16 overexpression-positive (n = 5, 5.7%; CS = 100%), HR-HPV DNA-positive/p16 overexpression-negative (n = 11, 12.5%; CS =81.8%), HR-HPV DNA-negative/p16 overexpression-positive (n = 0), and HR-HPV DNA-negative/p16 overexpression-negative (n = 72, 81.8%; CS = 79.5%). HR-HPV DNA-positive/p16-positive cases tended to have integrated HPV infection and high viral load, compared with HR-HPV DNA-positive/p16 overexpression-negative cases.

Conclusions

LC patients with HPV infection and high levels of p16 expression might have an improved survival outcome; however, it is necessary to recruit additional LC cases with HPV infection to determine the definitive characteristics of HPV-mediated LC and estimate survival outcome. These results may contribute to the development of a useful method for selecting patients with a potentially fair response to treatment and ensure laryngeal preservation.

Adenosquamous Carcinoma of the Head and Neck: Relationship to Human Papillomavirus and Review of the Literature.

Head & Neck Pathology, 5(2):108–116.

Masand RP, El-Mofty SK, Ma XJ, Luo Y, Flanagan JJ, Lewis JS Jr (2011).
PMID: 21305368 | DOI: 10.1007/s12105-011-0245-3.

Adenosquamous carcinoma (ADSC) of the head and neck is an aggressive variant of squamous cell carcinoma (SCC). Certain variants of head and neck SCC are human papillomavirus (HPV)-related and have better prognosis. The relationship of HPV to head and neck ADSC has not been investigated. We searched our files for the term "adenosquamous" and head and neck subsites and found cases from 1998 to 2009. The requisite histologic criteria were the presence of SCC combined with distinct gland formation and/or intracellular mucin. DNA in situ hybridization for high-risk HPV, RNA in situ hybridization for high risk HPV E6 and E7 transcripts, and immunohistochemistry for p16 and p53 were performed. The existing literature on ADSC was also reviewed. Of the 18 cases, eight were from the larynx and hypopharynx, four from the oral cavity, three from the oropharynx, and three from the nasal cavity. Three cases (16%) showed both high risk HPV E6 and E7 and p16 expression, one from the nasal cavity and two from the oropharynx. Both oropharyngeal carcinoma patients were alive and disease free at 34 and 103 months, respectively. ADSCs of the head and neck are a heterogeneous group of tumors. A small minority of cases harbor HPV and most of these, particularly those occurring at sites with known high prevalence of HPV, show active viral transcription with detectable E6 and E7 and overexpression of p16. The HPV-related oropharyngeal cases, though rare, appear to do very well clinically, while the remaining cohort of ADSC patients do quite poorly. Head and neck ADSC appears to be a mixed variant that can be further classified according to its HPV status.
Hedgehog signaling promotes expansion of Meibomian Gland stem cells in vivo

Investigative Ophthalmology & Visual Science

2022 Jan 01

Zhu, X;Xu, M;Grachtchouk, M;

RESULTS : Short-term lineage tracing data showed that _Lrig1_, _Lgr6_ and _Axin2_ label basal cells in MG ducts and acini. Long-term lineage tracing results showed that clones of labeled cells persist through multiple rounds of ductal and acinar renewal and give rise to differentiated progeny, identifying _Lrig1_+, _Lgr6_+ and _Axin2+_ ductal and acinar basal cells as self-renewing SCs. Forced expression of GLI2ΔN enhanced basal proliferation, caused expansion of _Lrig1_+ SCs, and lead to replacement of lipid-filled meibocytes by proliferative and poorly differentiated acinar cells. Transcriptional profiling of GLI2ΔN-expressing and control MGs revealed that forced GLI2ΔN expression caused greatly increased expression of _Lrig1_ and _Lgr6_ and suppressed expression of meibocyte differentiation genes.
Combined squamous cell carcinoma and Merkel cell carcinoma of the vulva: Role of human papillomavirus and Merkel cell polyomavirus

JAAD Case Reports 1.4 (2015): 196-199.

Chen CH, Wu YY, Kuo KT, Liau JY, Liang CW.
PMID: http

Merkel cell carcinoma (MCC), an uncommon and highly aggressive cutaneous malignancy, usually occurs on the sun-damaged skin of the elderly and is characterized by coexpression of neuroendocrine markers and CK20, a discriminant from other types of visceral neuroendocrine neoplasias. Since the discovery of Merkel cell polyomavirus (MCV), many researchers have confirmed its presence in about 80% of cutaneous MCCs.1 Although some cutaneous MCCs were reported to be associated with squamous cell carcinomas (SCCs), such combined cases accounted for only a minor portion and the viral status appeared to be different from pure MCC.
Long-term, hormone-responsive organoid cultures of human endometrium in a chemically defined medium.

Nat Cell Biol.

2017 Apr 10

Turco MY, Gardner L, Hughes J, Cindrova-Davies T, Gomez MJ, Farrell L, Hollinshead M, Marsh SG, Brosens JJ, Critchley HO, Simons BD, Hemberger M, Koo BK, Moffett A, Burton GJ.
PMID: 28394884 | DOI: 10.1038/ncb3516

In humans, the endometrium, the uterine mucosal lining, undergoes dynamic changes throughout the menstrual cycle and pregnancy. Despite the importance of the endometrium as the site of implantation and nutritional support for the conceptus, there are no long-term culture systems that recapitulate endometrial function in vitro. We adapted conditions used to establish human adult stem-cell-derived organoid cultures to generate three-dimensional cultures of normal and decidualized human endometrium. These organoids expand long-term, are genetically stable and differentiate following treatment with reproductive hormones. Single cells from both endometrium and decidua can generate a fully functional organoid. Transcript analysis confirmed great similarity between organoids and the primary tissue of origin. On exposure to pregnancy signals, endometrial organoids develop characteristics of early pregnancy. We also derived organoids from malignant endometrium, and so provide a foundation to study common diseases, such as endometriosis and endometrial cancer, as well as the physiology of early gestation.

Engineered Wnt ligands enable blood-brain barrier repair in neurological disorders

Science (New York, N.Y.)

2022 Feb 18

Martin, M;Vermeiren, S;Bostaille, N;Eubelen, M;Spitzer, D;Vermeersch, M;Profaci, CP;Pozuelo, E;Toussay, X;Raman-Nair, J;Tebabi, P;America, M;De Groote, A;Sanderson, LE;Cabochette, P;Germano, RFV;Torres, D;Boutry, S;de Kerchove d'Exaerde, A;Bellefroid, EJ;Phoenix, TN;Devraj, K;Lacoste, B;Daneman, R;Liebner, S;Vanhollebeke, B;
PMID: 35175798 | DOI: 10.1126/science.abm4459

The blood-brain barrier (BBB) protects the central nervous system (CNS) from harmful blood-borne factors. Although BBB dysfunction is a hallmark of several neurological disorders, therapies to restore BBB function are lacking. An attractive strategy is to repurpose developmental BBB regulators, such as Wnt7a, into BBB-protective agents. However, safe therapeutic use of Wnt ligands is complicated by their pleiotropic Frizzled signaling activities. Taking advantage of the Wnt7a/b-specific Gpr124/Reck co-receptor complex, we genetically engineered Wnt7a ligands into BBB-specific Wnt activators. In a "hit-and-run" adeno-associated virus-assisted CNS gene delivery setting, these new Gpr124/Reck-specific agonists protected BBB function, thereby mitigating glioblastoma expansion and ischemic stroke infarction. This work reveals that the signaling specificity of Wnt ligands is adjustable and defines a modality to treat CNS disorders by normalizing the BBB.

Pages

  • « first
  • ‹ previous
  • …
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?