Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (7)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • (-) Remove TBD filter TBD (7)
  • TH (2) Apply TH filter
  • Npy (2) Apply Npy filter
  • PDGFRA (2) Apply PDGFRA filter
  • TRPA1 (2) Apply TRPA1 filter
  • Olig2 (2) Apply Olig2 filter
  • Trpv1 (2) Apply Trpv1 filter
  • vGlut2 (2) Apply vGlut2 filter
  • Bcan (2) Apply Bcan filter
  • Piezo2 (1) Apply Piezo2 filter
  • MEG3 (1) Apply MEG3 filter
  • TRPM5 (1) Apply TRPM5 filter
  • Gal (1) Apply Gal filter
  • Wnt7b (1) Apply Wnt7b filter
  • Gnat3 (1) Apply Gnat3 filter
  • CCKAR (1) Apply CCKAR filter
  • Fgfr3 (1) Apply Fgfr3 filter
  • Rbfox3 (1) Apply Rbfox3 filter
  • CALCA (1) Apply CALCA filter
  • CCK (1) Apply CCK filter
  • Enpp1 (1) Apply Enpp1 filter
  • Rspo3 (1) Apply Rspo3 filter
  • FOXP2 (1) Apply FOXP2 filter
  • CHRNA7 (1) Apply CHRNA7 filter
  • CHRM5 (1) Apply CHRM5 filter
  • CSF1R (1) Apply CSF1R filter
  • Ccl2 (1) Apply Ccl2 filter
  • CXCL10 (1) Apply CXCL10 filter
  • CXCL13 (1) Apply CXCL13 filter
  • Mc4r (1) Apply Mc4r filter
  • DRD2 (1) Apply DRD2 filter
  • Prkcd (1) Apply Prkcd filter
  • Gata3 (1) Apply Gata3 filter
  • Thy1 (1) Apply Thy1 filter
  • GFAP (1) Apply GFAP filter
  • GLP1R (1) Apply GLP1R filter
  • PAX2 (1) Apply PAX2 filter
  • PVALB (1) Apply PVALB filter
  • SLC32A1 (1) Apply SLC32A1 filter
  • Cspg4 (1) Apply Cspg4 filter
  • IL1B (1) Apply IL1B filter
  • IL34 (1) Apply IL34 filter
  • ITGAM (1) Apply ITGAM filter
  • TAC1 (1) Apply TAC1 filter
  • CNTNAP2 (1) Apply CNTNAP2 filter
  • GFRA1 (1) Apply GFRA1 filter
  • UCN3 (1) Apply UCN3 filter
  • Mest (1) Apply Mest filter
  • Reln (1) Apply Reln filter
  • P2ry1 (1) Apply P2ry1 filter

Product

  • (-) Remove RNAscope HiPlex v2 assay filter RNAscope HiPlex v2 assay (7)

Research area

  • Cancer (2) Apply Cancer filter
  • Aging (1) Apply Aging filter
  • Cellular Senescence (1) Apply Cellular Senescence filter
  • Metabolism (1) Apply Metabolism filter
  • Neuroscience (1) Apply Neuroscience filter
  • Other: Methods (1) Apply Other: Methods filter
  • Other: Skin (1) Apply Other: Skin filter
  • Other: Transcriptomics (1) Apply Other: Transcriptomics filter
  • Single Cell Sequencing (1) Apply Single Cell Sequencing filter
  • Skin Disease (1) Apply Skin Disease filter
  • Transcriptomics (1) Apply Transcriptomics filter
  • Transplantation (1) Apply Transplantation filter

Category

  • Publications (7) Apply Publications filter
Lipid metabolism in dopaminergic neurons influences light entrainment

Journal of neurochemistry

2023 Feb 23

Fernandez, RF;Wilson, ES;Diaz, V;Martínez-Gardeazabal, J;Foguth, R;Cannon, JR;Jackson, SN;Hermann, BP;Eells, JB;Ellis, JM;
PMID: 36815399 | DOI: 10.1111/jnc.15793

Dietary lipids, particularly omega-3 polyunsaturated fatty acids, are speculated to impact behaviors linked to the dopaminergic system, such as movement and control of circadian rhythms. However, the ability to draw a direct link between dopaminergic omega-3 fatty acid metabolism and behavioral outcomes has been limited to the use of diet-based approaches, which are confounded by systemic effects. Here, neuronal lipid metabolism was targeted in a diet-independent manner by manipulation of long-chain acyl-CoA synthetase 6 (ACSL6) expression. ACSL6 performs the initial reaction for cellular fatty acid metabolism and prefers the omega-3 polyunsaturated fatty acid, docosahexaenoic acid (DHA). The loss of Acsl6 in mice (Acsl6-/- ) depletes neuronal membranes of DHA content and results in phenotypes linked to dopaminergic control, such as hyperlocomotion, impaired short-term spatial memory, and imbalances in dopamine neurochemistry. To investigate the role of dopaminergic ACSL6 on these outcomes, a dopaminergic neuron-specific ACSL6 knockout mouse was generated (Acsl6DA-/- ). Acsl6DA-/- mice demonstrated hyperlocomotion and imbalances in striatal dopamine neurochemistry. Circadian rhythms of both the Acsl6-/- and the Acsl6DA-/- mice were similar to control mice under basal conditions. However, upon light entrainment, a mimetic of jet lag, both the complete knockout of ACSL6 and the dopaminergic-neuron-specific loss of ACSL6 resulted in a longer recovery to entrainment compared to control mice. In conclusion, these data demonstrate that ACSL6 in dopaminergic neurons alters dopamine metabolism and regulation of light entrainment suggesting that DHA metabolism mediated by ACSL6 plays a role in dopamine neuron biology.
The Use of Single Cell RNA-seq and Spatial Transcriptomics in Understanding the Pathogenesis and Treatment of Skin Diseases

JID Innovations

2023 Mar 01

Houser, A;Kazmi, A;Nair, A;Ji, A;
| DOI: 10.1016/j.xjidi.2023.100198

The development of multi-omic profiling tools has rapidly expanded in recent years, along with their use in profiling skin tissues in various contexts, including dermatologic diseases. Among these tools, single-cell RNA-sequencing (scRNA-seq) and spatial transcriptomics (ST) have emerged as widely adopted and powerful assays for elucidating key cellular components and their spatial arrangement within skin disease. Here, we review recent biological insights gained from the use of scRNA-seq and ST, and the advantages of combining both, for profiling skin disease, including aberrant wound healing, inflammatory skin diseases, and cancer. We discuss the role of scRNA-seq and ST for improving skin disease treatments and moving towards the goal of achieving precision medicine in dermatology, whereby patients can be optimally matched to treatments that maximize therapeutic response.
Transfer learning in a biomaterial fibrosis model identifies in vivo senescence heterogeneity and contributions to vascularization and matrix production across species and diverse pathologies

GeroScience

2023 Apr 20

Cherry, C;Andorko, JI;Krishnan, K;Mejías, JC;Nguyen, HH;Stivers, KB;Gray-Gaillard, EF;Ruta, A;Han, J;Hamada, N;Hamada, M;Sturmlechner, I;Trewartha, S;Michel, JH;Davenport Huyer, L;Wolf, MT;Tam, AJ;Peña, AN;Keerthivasan, S;Le Saux, CJ;Fertig, EJ;Baker, DJ;Housseau, F;van Deursen, JM;Pardoll, DM;Elisseeff, JH;
PMID: 37079217 | DOI: 10.1007/s11357-023-00785-7

Cellular senescence is a state of permanent growth arrest that plays an important role in wound healing, tissue fibrosis, and tumor suppression. Despite senescent cells' (SnCs) pathological role and therapeutic interest, their phenotype in vivo remains poorly defined. Here, we developed an in vivo-derived senescence signature (SenSig) using a foreign body response-driven fibrosis model in a p16-CreERT2;Ai14 reporter mouse. We identified pericytes and "cartilage-like" fibroblasts as senescent and defined cell type-specific senescence-associated secretory phenotypes (SASPs). Transfer learning and senescence scoring identified these two SnC populations along with endothelial and epithelial SnCs in new and publicly available murine and human data single-cell RNA sequencing (scRNAseq) datasets from diverse pathologies. Signaling analysis uncovered crosstalk between SnCs and myeloid cells via an IL34-CSF1R-TGFβR signaling axis, contributing to tissue balance of vascularization and matrix production. Overall, our study provides a senescence signature and a computational approach that may be broadly applied to identify SnC transcriptional profiles and SASP factors in wound healing, aging, and other pathologies.
92 Single cell and spatial multiplex profiling of immune cell markers in FFPE tumor tissues using the novel RNAscope HiPlex v2 in situ hybridization assay

Journal for ImmunoTherapy of Cancer

2021 Nov 01

Basak, S;Dikshit, A;Yu, M;Ji, H;Chang, C;Zhang, B;
| DOI: 10.1136/jitc-2021-sitc2021.092

BackgroundThe tumor microenvironment (TME) is highly complex, comprised of tumor cells, immune cells, stromal cells, and extracellular matrix. Understanding spatial interactions between various cell types and their activation states in the TME is crucial for implementing successful immunotherapy strategies against various types of cancer. This study demonstrates a highly sensitive and specific multiplexed technique, the RNAscope HiPlex v2 in situ hybridization (ISH) assay for spatial and transcriptomic profiling of target genes to assess immune regulation in human lung, breast, cervical and ovarian FFPE tumor tissues.MethodsWe have expanded our current RNAscope HiPlex assay capability of iteratively multiplexing up to 12 targets in fixed and fresh frozen samples to include formalin fixed paraffin embedded (FFPE) tissues. The novel FFPE reagent effectively reduces background autofluorescence, improving the signal to noise ratio. We have leveraged this technology to investigate spatial expression of 12 oncology and immuno-oncology target genes, including tumor markers, immune checkpoint markers, immunosuppression markers, immune cell markers and secreted chemokine RNA expression profile within the TME. The targets were simultaneously registered using HiPlex image registration software v2 that enables background subtraction.ResultsWe visualized T cell infiltration and identified T cell subsets within tumors using CD3and CD8 expression and activated T cells by IFNG expression. We further identified subsets of pro- and anti-inflammatory macrophages by CD68 and CD163 expression as well effector cells which secrete chemokines and cytokine. We also detected the hypoxia markers HIF1A and VEGF to elucidate the immunosuppressive state of tumor cells. Preliminary analysis and quantification of the HIF1A expression using HALO image analysis software showed higher copy numbers in the lung tumor as compared to the other tumors, demonstrating the sensitivity of the assay through differential expression. We additionally showed the differential expression of immune checkpoint markers PDCD1, and CD274 within the TME.ConclusionsUsing a highly sensitive multiplexed RNAscope HiPlex v2 ISH assay, we have demonstrated the capability of this technique to spatially resolve 12 targets in four different tumor types. The FFPE reagent efficiently quenched background autofluorescence in the tissues and identified immune cell signatures within the TME. Quantification of immunosuppressive markers further depicted a differential expression among various tumors. This technology is highly beneficial for investigating complex and spatial tumor-stroma interactions in basic science and translational research. The assay can also provide valuable understanding of the biological crosstalk among various cell types in complex and heterogeneous tissues.
Multiomics Technologies Capture More Particulars, Reveal More Grandeur

Genetic Engineering & Biotechnology News

2023 Jun 01

LeMieux, J;
| DOI: 10.1089/gen.43.06.13

A patient's genome, Van Eyk noted, contains information about that patient's disease predispositions and drug responses. She added, however, that better information about disease risks and drug responses could be gleaned from the proteome. Although there are only so many protein-encoding genes, the intricacies of protein expression generate various kinds of proteomic information in abundance. According to Van Eyk, information about disease-induced modifications, isoforms, concentration changes, and chemical complexity can inform predictions of what will happen in the body, in the context of the body and the environment. She suggests that a proteomics approach—one that would involve monitoring of not just one protein at a time, but thousands—could generate valuable clinical insights.
Opportunities for High-plex Spatial Transcriptomics in Solid Organ Transplantation

Transplantation

2023 Mar 22

Cross, AR;Gartner, L;Hester, J;Issa, F;
PMID: 36944604 | DOI: 10.1097/TP.0000000000004587

The last 5 y have seen the development and widespread adoption of high-plex spatial transcriptomic technology. This technique detects and quantifies mRNA transcripts in situ, meaning that transcriptomic signatures can be sampled from specific cells, structures, lesions, or anatomical regions while conserving the physical relationships that exist within complex tissues. These methods now frequently implement next-generation sequencing, enabling the simultaneous measurement of many targets, up to and including the whole mRNA transcriptome. To date, spatial transcriptomics has been foremost used in the fields of neuroscience and oncology, but there is potential for its use in transplantation sciences. Transplantation has a clear dependence on biopsies for diagnosis, monitoring, and research. Transplant patients represent a unique cohort with multiple organs of interest, clinical courses, demographics, and immunosuppressive regimens. Obtaining high complexity data on the disease processes underlying rejection, tolerance, infection, malignancy, and injury could identify new opportunities for therapeutic intervention and biomarker identification. In this review, we discuss currently available spatial transcriptomic technologies and how they can be applied to transplantation.
The end of the beginning: application of single-cell sequencing to chronic lymphocytic leukemia

Blood

2023 Jan 26

Nagler, A;Wu, CJ;
PMID: 36095842 | DOI: 10.1182/blood.2021014669

Single-cell analysis has emerged over the past decade as a transformative technology informative for the systematic analysis of complex cell populations such as in cancers and the tumor immune microenvironment. The methodologic and analytical advancements in this realm have evolved rapidly, scaling from but a few cells at its outset to the current capabilities of processing and analyzing hundreds of thousands of individual cells at a time. The types of profiling attainable at individual cell resolution now range from genetic and transcriptomic characterization and extend to epigenomic and spatial analysis. Additionally, the increasing ability to achieve multiomic integration of these data layers now yields ever richer insights into diverse molecular disease subtypes and the patterns of cellular circuitry on a per-cancer basis. Over the years, chronic lymphocytic leukemia (CLL) consistently has been at the forefront of genomic investigation, given the ready accessibility of pure leukemia cells and immune cells from circulating blood of patients with this disease. Herein, we review the recent forays into the application of single-cell analysis to CLL, which are already revealing a new understanding of the natural progression of CLL, the impact of novel therapies, and the interactions with coevolving nonmalignant immune cell populations. As we emerge from the end of the beginning of this technologic revolution, CLL stands poised to reap the benefits of single-cell analysis from the standpoints of uncovering fresh fundamental biological knowledge and of providing a path to devising regimens of personalized diagnosis, treatment, and monitoring.
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?