Rehman, R;Miller, M;Krishnamurthy, SS;Kjell, J;Elsayed, L;Hauck, SM;Olde Heuvel, F;Conquest, A;Chandrasekar, A;Ludolph, A;Boeckers, T;Mulaw, MA;Goetz, M;Morganti-Kossmann, MC;Takeoka, A;Roselli, F;
PMID: 36577378 | DOI: 10.1016/j.celrep.2022.111867
The complexity of signaling events and cellular responses unfolding in neuronal, glial, and immune cells upon traumatic brain injury (TBI) constitutes an obstacle in elucidating pathophysiological links and targets for intervention. We use array phosphoproteomics in a murine mild blunt TBI to reconstruct the temporal dynamics of tyrosine-kinase signaling in TBI and then scrutinize the large-scale effects of perturbation of Met/HGFR, VEGFR1, and Btk signaling by small molecules. We show Met/HGFR as a selective modifier of early microglial response and that Met/HGFR blockade prevents the induction of microglial inflammatory mediators, of reactive microglia morphology, and TBI-associated responses in neurons and vasculature. Both acute and prolonged Met/HGFR inhibition ameliorate neuronal survival and motor recovery. Early elevation of HGF itself in the cerebrospinal fluid of TBI patients suggests that this mechanism has translational value in human subjects. Our findings identify Met/HGFR as a modulator of early neuroinflammation in TBI with promising translational potential.
Reviews in the neurosciences
Visvanathar, R;Papanikolaou, M;Nôga, DA;Pádua-Reis, M;Tort, ABL;Blunder, M;
PMID: 34717053 | DOI: 10.1515/revneuro-2021-0109
The field of cannabinoid research has been receiving ever-growing interest. Ongoing debates worldwide about the legislation of medical cannabis further motivates research into cannabinoid function within the central nervous system (CNS). To date, two well-characterized cannabinoid receptors exist. While most research has investigated Cb1 receptors (Cb1Rs), Cb2 receptors (Cb2Rs) in the brain have started to attract considerable interest in recent years. With indisputable evidence showing the wide-distribution of Cb2Rs in the brain of different species, they are no longer considered just peripheral receptors. However, in contrast to Cb1Rs, the functionality of central Cb2Rs remains largely unexplored. Here we review recent studies on hippocampal Cb2Rs. While conflicting results about their function have been reported, we have made significant progress in understanding the involvement of Cb2Rs in modulating cellular properties and network excitability. Moreover, Cb2Rs have been shown to be expressed in different subregions of the hippocampus, challenging our prior understanding of the endocannabinoid system. Although more insight into their functional roles is necessary, we propose that targeting hippocampal Cb2Rs may offer novel therapies for diseases related to memory and adult neurogenesis deficits.
Chen, Z;Soni, N;Pinero, G;Giotti, B;Eddins, DJ;Lindblad, KE;Ross, JL;Puigdelloses Vallcorba, M;Joshi, T;Angione, A;Thomason, W;Keane, A;Tsankova, NM;Gutmann, DH;Lira, SA;Lujambio, A;Ghosn, EEB;Tsankov, AM;Hambardzumyan, D;
PMID: 37012245 | DOI: 10.1038/s41467-023-37361-8
Myeloid cells comprise the majority of immune cells in tumors, contributing to tumor growth and therapeutic resistance. Incomplete understanding of myeloid cells response to tumor driver mutation and therapeutic intervention impedes effective therapeutic design. Here, by leveraging CRISPR/Cas9-based genome editing, we generate a mouse model that is deficient of all monocyte chemoattractant proteins. Using this strain, we effectively abolish monocyte infiltration in genetically engineered murine models of de novo glioblastoma (GBM) and hepatocellular carcinoma (HCC), which show differential enrichment patterns for monocytes and neutrophils. Eliminating monocyte chemoattraction in monocyte enriched PDGFB-driven GBM invokes a compensatory neutrophil influx, while having no effect on Nf1-silenced GBM model. Single-cell RNA sequencing reveals that intratumoral neutrophils promote proneural-to-mesenchymal transition and increase hypoxia in PDGFB-driven GBM. We further demonstrate neutrophil-derived TNF-a directly drives mesenchymal transition in PDGFB-driven primary GBM cells. Genetic or pharmacological inhibiting neutrophils in HCC or monocyte-deficient PDGFB-driven and Nf1-silenced GBM models extend the survival of tumor-bearing mice. Our findings demonstrate tumor-type and genotype dependent infiltration and function of monocytes and neutrophils and highlight the importance of targeting them simultaneously for cancer treatments.
Marinelli, S;Marrone, MC;Di Domenico, M;Marinelli, S;
PMID: 36222019 | DOI: 10.1002/glia.24281
Microglia, the innate immune cells of the central nervous system (CNS), execute their sentinel, housekeeping and defense functions through a panoply of genes, receptors and released cytokines, chemokines and neurotrophic factors. Moreover, microglia functions are closely linked to the constant communication with other cell types, among them neurons. Depending on the signaling pathway and type of stimuli involved, the outcome of microglia operation can be neuroprotective or neurodegenerative. Accordingly, microglia are increasingly becoming considered cellular targets for therapeutic intervention. Among signals controlling microglia activity, the endocannabinoid (EC) system has been shown to exert a neuroprotective role in many neurological diseases. Like neurons, microglia express functional EC receptors and can produce and degrade ECs. Interestingly, boosting EC signaling leads to an anti-inflammatory and neuroprotective microglia phenotype. Nonetheless, little evidence is available on the microglia-mediated therapeutic effects of EC compounds. This review focuses on the EC signals acting on the CNS microglia in physiological and pathological conditions, namely on the CB1R, CB2R and TRPV1-mediated regulation of microglia properties. It also provides new evidence, which strengthens the understanding of mechanisms underlying the control of microglia functions by ECs. Given the broad expression of the EC system in glial and neuronal cells, the resulting picture is the need for in vivo studies in transgenic mouse models to dissect the contribution of EC microglia signaling in the neuroprotective effects of EC-derived compounds.
Barbee, B;Gourley, S;
| DOI: 10.1016/j.addicn.2022.100012
Cocaine use disorder (CUD) is a significant public health issue that generates substantial personal, familial, and economic burdens. Still, there are no FDA-approved pharmacotherapies for CUD. Cocaine-dependent individuals report anxiety during withdrawal, and alleviation of anxiety and other negative affective states may be critical for maintaining drug abstinence. However, the neurobiological mechanisms underlying abstinence-related anxiety in humans or anxiety-like behavior in rodents are not fully understood. This review summarizes investigations regarding anxiety-like behavior in mice and rats undergoing cocaine abstinence, as assessed using four of the most common anxiety-related assays: the elevated plus (or its derivative, the elevated zero) maze, open field test, light-dark transition test, and defensive burying task. We first summarize available evidence that cocaine abstinence generates anxiety-like behavior that persists throughout protracted abstinence. Then, we examine investigations concerning neuropeptide, neurotransmitter, and neuromodulator systems in cocaine abstinence-induced anxiety-like behavior. Throughout, we discuss how differences in sex, rodent strain, cocaine dose and dosing strategy, and abstinence duration interact to generate anxiety-like behavior.
International Journal of Molecular Sciences
García-Gutiérrez, M;Navarrete, F;Gasparyan, A;Navarro, D;Morcuende, Á;Femenía, T;Manzanares, J;
| DOI: 10.3390/ijms23115908
Cumulative evidence has pointed out cannabinoid CB2 receptors (CB2r) as a potential therapeutic key target for treating alcohol use disorder (AUD). This review provides the most relevant results obtained from rodent and human studies, including an integrative section focused on the involvement of CB2r in the neurobiology of alcohol addiction. A literature search was conducted using the electronic databases Medline and Scopus for articles. The search strategy was as follows: “Receptor, Cannabinoid, CB2” AND “Alcohol-Related Disorders” AND “human/or patients”; “Receptor, Cannabinoid, CB2” AND “Alcohol” OR “Ethanol” AND “rodents/or mice/or rats”. Pharmacological approaches demonstrated that the activation or blockade of CB2r modulated different alcohol-addictive behaviors. Rodent models of alcoholism revealed significant alterations of CB2r in brain areas of the reward system. In addition, mice lacking CB2r (CB2KO) show increased alcohol consumption, motivation, and relapse alterations. It has been stressed that the potential neurobiological mechanisms underlying their behavioral effects involve critical elements of the alcohol reward system. Interestingly, recent postmortem studies showed CNR2 alterations in brain areas of alcoholic patients. Moreover, although the number of studies is limited, the results revealed an association between some genetic alterations of the CNR2 and an increased risk for developing AUD. This review provides evidence that CB2r may play a role in alcohol addiction. Clinical studies are necessary to figure out whether CB2r ligands may prove useful for the treatment of AUD in humans.
The gut microbiota regulates hypothalamic inflammation and leptin sensitivity in Western diet-fed mice via a GLP-1R-dependent mechanism
Heiss, CN;Mannerås-Holm, L;Lee, YS;Serrano-Lobo, J;Håkansson Gladh, A;Seeley, RJ;Drucker, DJ;Bäckhed, F;Olofsson, LE;
PMID: 34038733 | DOI: 10.1016/j.celrep.2021.109163
Mice lacking a microbiota are protected from diet-induced obesity. Previous studies have shown that feeding a Western diet causes hypothalamic inflammation, which in turn can lead to leptin resistance and weight gain. Here, we show that wild-type (WT) mice with depleted gut microbiota, i.e., germ-free (GF) and antibiotic-treated mice, have elevated levels of glucagon-like peptide-1 (GLP-1), are protected against diet-induced hypothalamic inflammation, and have enhanced leptin sensitivity when fed a Western diet. Using GLP-1 receptor (GLP-1R)-deficient mice and pharmacological inhibition of the GLP-1R in WT mice, we demonstrate that intact GLP-1R signaling is required for preventing hypothalamic inflammation and enhancing leptin sensitivity. Furthermore, we show that astrocytes express the GLP-1R, and deletion of the receptor in glial fibrillary acidic protein (GFAP)-expressing cells diminished the antibiotic-induced protection against diet-induced hypothalamic inflammation. Collectively, our results suggest that depletion of the gut microbiota attenuates diet-induced hypothalamic inflammation and enhances leptin sensitivity via GLP-1R-dependent mechanisms.