Kemp, GM;Altimimi, HF;Nho, Y;Heir, R;Klyczek, A;Stellwagen, D;
PMID: 36104437 | DOI: 10.1038/s41380-022-01737-x
Acute stress triggers plasticity of forebrain synapses as well as behavioral changes. Here we reveal that Tumor Necrosis Factor α (TNF) is a required downstream mediator of the stress response in mice, necessary for stress-induced synaptic potentiation in the ventral hippocampus and for an increase in anxiety-like behaviour. Acute stress is sufficient to activate microglia, triggering the long-term release of TNF. Critically, on-going TNF signaling specifically in the ventral hippocampus is necessary to sustain both the stress-induced synaptic and behavioral changes, as these could be reversed hours after induction by antagonizing TNF signaling. This demonstrates that TNF maintains the synaptic and behavioral stress response in vivo, making TNF a potential novel therapeutic target for stress disorders.
Weil, T;Daly, KM;Yarur Castillo, H;Thomsen, MB;Wang, H;Mercau, ME;Hattar, S;Tejeda, H;Fernandez, DC;
PMID: 35687680 | DOI: 10.1126/sciadv.abn3567
Exposure to irregular lighting schedules leads to deficits in affective behaviors. The retino-recipient perihabenular nucleus (PHb) of the dorsal thalamus has been shown to mediate these effects in mice. However, the mechanisms of how light information is processed within the PHb remains unknown. Here, we show that the PHb contains a distinct cluster of GABAergic neurons that receive direct retinal input. These neurons are part of a larger inhibitory network composed of the thalamic reticular nucleus and zona incerta, known to modulate thalamocortical communication. In addition, PHbGABA neurons locally modulate excitatory-relay neurons, which project to limbic centers. Chronic exposure to irregular light-dark cycles alters photo-responsiveness and synaptic output of PHbGABA neurons, disrupting daily oscillations of genes associated with inhibitory and excitatory PHb signaling. Consequently, selective and chronic PHbGABA manipulation results in mood alterations that mimic those caused by irregular light exposure. Together, light-mediated disruption of PHb inhibitory networks underlies mood deficits.
Investigative Ophthalmology & Visual Science
Oikawa, K;Kiland, J;Mathu, V;Torne, O;
METHODS : Retinal, optic nerve head (ONH) and distal optic nerve (ON) tissues from 8 juvenile 10-12 week-old cats (4 males and 4 females) with feline congenital glaucoma (FCG) and 5 age-matched normal control cats (3 males and 2 females) were used. Data for weekly intraocular pressure (IOP) and optic nerve axon counts were available for all subjects. Protein and gene expression in tissue cryosections were examined by immunofluorescence labeling (IF) and RNAscope in situ hybridization (ISH), respectively. Retinal tissue was IF labeled for myeloid cell marker, IBA-1 and flat-mounted. ISH for markers of infiltrating monocytes/macrophages (_CCR2_) and proinflammatory cytokines (_IL1A_, _C1QA_, _TNF_) was performed. Microglia were identified by IF of homeostatic microglial marker, P2RY12. Microscopy images wereanalyzed using Image J, QuPath and Imaris. Two-tailed unpaired t-test or Mann-Whitney test or ANOVA were used for between-group comparisons (p
Huo, J;Du, F;Duan, K;Yin, G;Liu, X;Ma, Q;Dong, D;Sun, M;Hao, M;Su, D;Huang, T;Ke, J;Lai, S;Zhang, Z;Guo, C;Sun, Y;Cheng, L;
PMID: 36952340 | DOI: 10.1016/j.celrep.2023.112300
Mechanical allodynia (MA) represents one prevalent symptom of chronic pain. Previously we and others have identified spinal and brain circuits that transmit or modulate the initial establishment of MA. However, brain-derived descending pathways that control the laterality and duration of MA are still poorly understood. Here we report that the contralateral brain-to-spinal circuits, from Oprm1 neurons in the lateral parabrachial nucleus (lPBNOprm1), via Pdyn neurons in the dorsal medial regions of hypothalamus (dmHPdyn), to the spinal dorsal horn (SDH), act to prevent nerve injury from inducing contralateral MA and reduce the duration of bilateral MA induced by capsaicin. Ablating/silencing dmH-projecting lPBNOprm1 neurons or SDH-projecting dmHPdyn neurons, deleting Dyn peptide from dmH, or blocking spinal κ-opioid receptors all led to long-lasting bilateral MA. Conversely, activation of dmHPdyn neurons or their axonal terminals in SDH can suppress sustained bilateral MA induced by lPBN lesion.
The Journal of experimental medicine
Kaiser, FMP;Gruenbacher, S;Oyaga, MR;Nio, E;Jaritz, M;Sun, Q;van der Zwaag, W;Kreidl, E;Zopf, LM;Dalm, VASH;Pel, J;Gaiser, C;van der Vliet, R;Wahl, L;Rietman, A;Hill, L;Leca, I;Driessen, G;Laffeber, C;Brooks, A;Katsikis, PD;Lebbink, JHG;Tachibana, K;van der Burg, M;De Zeeuw, CI;Badura, A;Busslinger, M;
PMID: 35947077 | DOI: 10.1084/jem.20220498
The genetic causes of primary antibody deficiencies and autism spectrum disorder (ASD) are largely unknown. Here, we report a patient with hypogammaglobulinemia and ASD who carries biallelic mutations in the transcription factor PAX5. A patient-specific Pax5 mutant mouse revealed an early B cell developmental block and impaired immune responses as the cause of hypogammaglobulinemia. Pax5 mutant mice displayed behavioral deficits in all ASD domains. The patient and the mouse model showed aberrant cerebellar foliation and severely impaired sensorimotor learning. PAX5 deficiency also caused profound hypoplasia of the substantia nigra and ventral tegmental area due to loss of GABAergic neurons, thus affecting two midbrain hubs, controlling motor function and reward processing, respectively. Heterozygous Pax5 mutant mice exhibited similar anatomic and behavioral abnormalities. Lineage tracing identified Pax5 as a crucial regulator of cerebellar morphogenesis and midbrain GABAergic neurogenesis. These findings reveal new roles of Pax5 in brain development and unravel the underlying mechanism of a novel immunological and neurodevelopmental syndrome.
Furlan, A;Corona, A;Boyle, S;Sharma, R;Rubino, R;Habel, J;Gablenz, EC;Giovanniello, J;Beyaz, S;Janowitz, T;Shea, SD;Li, B;
PMID: 36266470 | DOI: 10.1038/s41593-022-01178-3
Obesity is a global pandemic that is causally linked to many life-threatening diseases. Apart from some rare genetic conditions, the biological drivers of overeating and reduced activity are unclear. Here, we show that neurotensin-expressing neurons in the mouse interstitial nucleus of the posterior limb of the anterior commissure (IPAC), a nucleus of the central extended amygdala, encode dietary preference for unhealthy energy-dense foods. Optogenetic activation of IPACNts neurons promotes obesogenic behaviors, such as hedonic eating, and modulates food preference. Conversely, acute inhibition of IPACNts neurons reduces feeding and decreases hedonic eating. Chronic inactivation of IPACNts neurons recapitulates these effects, reduces preference for sweet, non-caloric tastants and, furthermore, enhances locomotion and energy expenditure; as a result, mice display long-term weight loss and improved metabolic health and are protected from obesity. Thus, the activity of a single neuronal population bidirectionally regulates energy homeostasis. Our findings could lead to new therapeutic strategies to prevent and treat obesity.
The American journal of psychiatry
Rudzinskas, SA;Goldman, D;
PMID: 36048494 | DOI: 10.1176/appi.ajp.20220594