Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (112)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • (-) Remove SLC32A1 filter SLC32A1 (74)
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • (-) Remove Penk filter Penk (28)
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope Multiplex Fluorescent Assay (42) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope Fluorescent Multiplex Assay (37) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope (12) Apply RNAscope filter
  • RNAscope Multiplex Fluorescent v2 (4) Apply RNAscope Multiplex Fluorescent v2 filter
  • RNAscope 2.5 HD Duplex (1) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (1) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope 2.5 HD Red assay (1) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.5 LS Assay (1) Apply RNAscope 2.5 LS Assay filter
  • RNAscope Fluorescent Multiplex Reagent kit (1) Apply RNAscope Fluorescent Multiplex Reagent kit filter
  • RNAscope HiPlex v2 assay (1) Apply RNAscope HiPlex v2 assay filter
  • RNAscope Target Retrieval Reagents (1) Apply RNAscope Target Retrieval Reagents filter

Research area

  • Neuroscience (94) Apply Neuroscience filter
  • Inflammation (6) Apply Inflammation filter
  • Behavior (5) Apply Behavior filter
  • Cancer (5) Apply Cancer filter
  • Metabolism (5) Apply Metabolism filter
  • Anxiety (3) Apply Anxiety filter
  • behavioral (3) Apply behavioral filter
  • Nueroscience (3) Apply Nueroscience filter
  • Pain (3) Apply Pain filter
  • Addiction (2) Apply Addiction filter
  • Sleep (2) Apply Sleep filter
  • Alzheimer's Disease (1) Apply Alzheimer's Disease filter
  • Cardiovascular Disease (1) Apply Cardiovascular Disease filter
  • CGT (1) Apply CGT filter
  • Cocaine Reward (1) Apply Cocaine Reward filter
  • Covid (1) Apply Covid filter
  • Crohn’s disease (1) Apply Crohn’s disease filter
  • Development (1) Apply Development filter
  • Eating (1) Apply Eating filter
  • emotional valence (1) Apply emotional valence filter
  • Endocrinology (1) Apply Endocrinology filter
  • Fear (1) Apply Fear filter
  • Feeding (1) Apply Feeding filter
  • Glaucoma (1) Apply Glaucoma filter
  • Motor Behaviors (1) Apply Motor Behaviors filter
  • Obesity (1) Apply Obesity filter
  • Ophthalmology (1) Apply Ophthalmology filter
  • other: Aging (1) Apply other: Aging filter
  • Other: Gut (1) Apply Other: Gut filter
  • Other: Kidney (1) Apply Other: Kidney filter
  • Other: Metabolism (1) Apply Other: Metabolism filter
  • Other: Psychiatry (1) Apply Other: Psychiatry filter
  • Paralysis (1) Apply Paralysis filter
  • Psychiatry (1) Apply Psychiatry filter
  • PTSD (1) Apply PTSD filter
  • Reward (1) Apply Reward filter
  • Sex Differences (1) Apply Sex Differences filter
  • Spinal Cord injury (1) Apply Spinal Cord injury filter
  • Stress (1) Apply Stress filter
  • Trauma (1) Apply Trauma filter

Category

  • Publications (112) Apply Publications filter
Control of non-REM sleep by ventrolateral medulla glutamatergic neurons projecting to the preoptic area

Nature communications

2022 Aug 12

Teng, S;Zhen, F;Wang, L;Schalchli, JC;Simko, J;Chen, X;Jin, H;Makinson, CD;Peng, Y;
PMID: 35961989 | DOI: 10.1038/s41467-022-32461-3

Understanding the neural mechanisms underlying sleep state transitions is a fundamental goal of neurobiology and important for the development of new treatments for insomnia and other sleep disorders. Yet, brain circuits controlling this process remain poorly understood. Here we identify a population of sleep-active glutamatergic neurons in the ventrolateral medulla (VLM) that project to the preoptic area (POA), a prominent sleep-promoting region, in mice. Microendoscopic calcium imaging demonstrate that these VLM glutamatergic neurons display increased activity during the transitions from wakefulness to Non-Rapid Eye Movement (NREM) sleep. Chemogenetic silencing of POA-projecting VLM neurons suppresses NREM sleep, whereas chemogenetic activation of these neurons promotes NREM sleep. Moreover, we show that optogenetic activation of VLM glutamatergic neurons or their projections in the POA initiates NREM sleep in awake mice. Together, our findings uncover an excitatory brainstem-hypothalamic circuit that controls the wake-sleep transitions.
A circuit from lateral septum neurotensin neurons to tuberal nucleus controls hedonic feeding

Molecular psychiatry

2022 Aug 26

Chen, Z;Chen, G;Zhong, J;Jiang, S;Lai, S;Xu, H;Deng, X;Li, F;Lu, S;Zhou, K;Li, C;Liu, Z;Zhang, X;Zhu, Y;
PMID: 36028570 | DOI: 10.1038/s41380-022-01742-0

Feeding behavior is regulated by both the homeostatic needs of the body and hedonic values of the food. Easy access to palatable energy-dense foods and the consequent obesity epidemic stress the urgent need for a better understanding of neural circuits that regulate hedonic feeding. Here, we report that neurotensin-positive neurons in the lateral septum (LSNts) play a crucial role in regulating hedonic feeding. Silencing LSNts specifically promotes feeding of palatable food, whereas activation of LSNts suppresses overall feeding. LSNts neurons project to the tuberal nucleus (TU) via GABA signaling to regulate hedonic feeding, while the neurotensin signal from LSNts→the supramammillary nucleus (SUM) is sufficient to suppress overall feeding. In vivo calcium imaging and optogenetic manipulation reveal two populations of LSNts neurons that are activated and inhibited during feeding, which contribute to food seeking and consumption, respectively. Chronic activation of LSNts or LSNts→TU is sufficient to reduce high-fat diet-induced obesity. Our findings suggest that LSNts→TU is a key pathway in regulating hedonic feeding.
A hypothalamus-habenula circuit controls aversion.

Mol Psychiatry.

2019 Feb 12

Lazaridis I, Tzortzi O, Weglage M, Märtin A, Xuan Y, Parent M, Johansson Y, Fuzik J, Fürth D, Fenno LE, Ramakrishnan C, Silberberg G, Deisseroth K, Carlén M, Meletis K.
PMID: 30755721 | DOI: 10.1038/s41380-019-0369-5

Encoding and predicting aversive events are critical functions of circuits that support survival and emotional well-being. Maladaptive circuit changes in emotional valence processing can underlie the pathophysiology of affective disorders. The lateral habenula (LHb) has been linked to aversion and mood regulation through modulation of the dopamine and serotonin systems. We have defined the identity and function of glutamatergic (Vglut2) control of the LHb, comparing the role of inputs originating in the globus pallidus internal segment (GPi), and lateral hypothalamic area (LHA), respectively. We found that LHb-projecting LHA neurons, and not the proposed GABA/glutamate co-releasing GPi neurons, are responsible for encoding negative value. Monosynaptic rabies tracing of the presynaptic organization revealed a predominantly limbic input onto LHA Vglut2 neurons, while sensorimotor inputs were more prominent onto GABA/glutamate co-releasing GPi neurons. We further recorded the activity of LHA Vglut2 neurons, by imaging calcium dynamics in response to appetitive versus aversive events in conditioning paradigms. LHA Vglut2 neurons formed activity clusters representing distinct reward or aversion signals, including a population that responded to mild foot shocks and predicted aversive events. We found that the LHb-projecting LHA Vglut2 neurons encode negative valence and rapidly develop a prediction signal for negative events. These findings establish the glutamatergic LHA-LHb circuit as a critical node in value processing.

The neurons that restore walking after paralysis

Nature

2022 Nov 01

Kathe, C;Skinnider, MA;Hutson, TH;Regazzi, N;Gautier, M;Demesmaeker, R;Komi, S;Ceto, S;James, ND;Cho, N;Baud, L;Galan, K;Matson, KJE;Rowald, A;Kim, K;Wang, R;Minassian, K;Prior, JO;Asboth, L;Barraud, Q;Lacour, SP;Levine, AJ;Wagner, F;Bloch, J;Squair, JW;Courtine, G;
PMID: 36352232 | DOI: 10.1038/s41586-022-05385-7

A spinal cord injury interrupts pathways from the brain and brainstem that project to the lumbar spinal cord, leading to paralysis. Here we show that spatiotemporal epidural electrical stimulation (EES) of the lumbar spinal cord<sup>1-3</sup> applied during neurorehabilitation<sup>4,5</sup> (EES<sup>REHAB</sup>) restored walking in nine individuals with chronic spinal cord injury. This recovery involved a reduction in neuronal activity in the lumbar spinal cord of humans during walking. We hypothesized that this unexpected reduction reflects activity-dependent selection of specific neuronal subpopulations that become essential for a patient to walk after spinal cord injury. To identify these putative neurons, we modelled the technological and therapeutic features underlying EES<sup>REHAB</sup> in mice. We applied single-nucleus RNA sequencing<sup>6-9</sup> and spatial transcriptomics<sup>10,11</sup> to the spinal cords of these mice to chart a spatially resolved molecular atlas of recovery from paralysis. We then employed cell type<sup>12,13</sup> and spatial prioritization to identify the neurons involved in the recovery of walking. A single population of excitatory interneurons nested within intermediate laminae emerged. Although these neurons are not required for walking before spinal cord injury, we demonstrate that they are essential for the recovery of walking with EES following spinal cord injury. Augmenting the activity of these neurons phenocopied the recovery of walking enabled by EES<sup>REHAB</sup>, whereas ablating them prevented the recovery of walking that occurs spontaneously after moderate spinal cord injury. We thus identified a recovery-organizing neuronal subpopulation that is necessary and sufficient to regain walking after paralysis. Moreover, our methodology establishes a framework for using molecular cartography to identify the neurons that produce complex behaviours.
Neurochemical Heterogeneity among Lateral Hypothalamic Hypocretin/Orexin and Melanin-Concentrating Hormone Neurons Identified through Single Cell Gene Expression Analysis

eNeuro

2017 Sep 01

Mickelsen LE, Kolling FW, Chimileski BR, Fujita A, Norris C, Chen K, Nelson CE, Jackson AC.
PMID: - | DOI: 10.1523/ENEURO.0013-17.2017

The lateral hypothalamic area (LHA) lies at the intersection of multiple neural and humoral systems and orchestrates fundamental aspects of behavior. Two neuronal cell types found in the LHA are defined by their expression of hypocretin/orexin (Hcrt/Ox) and melanin-concentrating hormone (MCH) and are both important regulators of arousal, feeding and metabolism. Conflicting evidence suggests that these cell populations have a more complex signaling repertoire than previously appreciated, particularly in regard to their co-expression of other neuropeptides and the machinery for the synthesis and release of GABA and glutamate. Here, we undertook a single cell expression profiling approach to decipher the neurochemical phenotype, and heterogeneity therein, of Hcrt/Ox and MCH neurons. In transgenic mouse lines, we used single cell qPCR to quantify the expression of 48 key genes, which include neuropeptides, fast neurotransmitter components and other key markers, which revealed unexpected neurochemical diversity. We found that single MCH and Hcrt/Ox neurons express transcripts for multiple neuropeptides and markers of both excitatory and inhibitory fast neurotransmission. Virtually all MCH and approximately half of the Hcrt/Ox neurons sampled express both the machinery for glutamate release and GABA synthesis in the absence of a vesicular GABA release pathway. Furthermore, we found that this profile is characteristic of a subpopulation of LHA glutamatergic neurons but contrasts with a broad population of LHA GABAergic neurons. Identifying the neurochemical diversity of Hcrt/Ox and MCH neurons will further our understanding of how these populations modulate postsynaptic excitability through multiple signaling mechanisms and coordinate diverse behavioral outputs.

Significance Statement The lateral hypothalamic area (LHA) is a key regulator of fundamental behavioral states such as arousal, stress and reward, and disruption of neural circuits in this region is associated with disorders of sleep, feeding and motivated behavior. The multifunctional nature of the LHA is attributable to a heterogeneous population of neurons that exhibit significant phenotypic and neurochemical diversity. Here we sought to resolve aspects of this diversity in two well-studied but incompletely understood LHA neuron populations, defined by their expression of neuropeptides hypocretin/orexin (Hcrt/Ox) and melanin-concentrating hormone (MCH). These efforts lay a foundation for understanding, at a molecular and cellular level, how Hcrt/Ox and MCH neurons coordinate behavioral output and thereby give rise to fundamental innate behavioral states.

Cross-Laboratory Analysis of Brain Cell Type Transcriptomes with Applications to Interpretation of Bulk Tissue Data

ENEURO

2017 Nov 20

Mancarci BO, Toker L, Tripathy SJ, Li B, Rocco B, Sibille E, Pavlidis P.
PMID: - | DOI: 10.1523/ENEURO.0212-17.2017

Establishing the molecular diversity of cell types is crucial for the study of the nervous system. We compiled a cross-laboratory database of mouse brain cell type-specific transcriptomes from 36 major cell types from across the mammalian brain using rigorously curated published data from pooled cell type microarray and single cell RNA-sequencing studies. We used these data to identify cell type-specific marker genes, discovering a substantial number of novel markers, many of which we validated using computational and experimental approaches. We further demonstrate that summarized expression of marker gene sets in bulk tissue data can be used to estimate the relative cell type abundance across samples. To facilitate use of this expanding resource, we provide a user-friendly web interface at Neuroexpresso.org.

Significance Statement Cell type markers are powerful tools in the study of the nervous system that help reveal properties of cell types and acquire additional information from large scale expression experiments. Despite their usefulness in the field, known marker genes for brain cell types are few in number. We present NeuroExpresso, a database of brain cell type specific gene expression profiles, and demonstrate the use of marker genes for acquiring cell type specific information from whole tissue expression. The database will prove itself as a useful resource for researchers aiming to reveal novel properties of the cell types and aid both laboratory and computational scientists to unravel the cell type specific components of brain disorders.

Early neuroinflammatory responses in the visual pathway in a feline inherited glaucoma model

Investigative Ophthalmology & Visual Science

2022 Jan 01

Oikawa, K;Kiland, J;Mathu, V;Torne, O;

METHODS : Retinal, optic nerve head (ONH) and distal optic nerve (ON) tissues from 8 juvenile 10-12 week-old cats (4 males and 4 females) with feline congenital glaucoma (FCG) and 5 age-matched normal control cats (3 males and 2 females) were used. Data for weekly intraocular pressure (IOP) and optic nerve axon counts were available for all subjects. Protein and gene expression in tissue cryosections were examined by immunofluorescence labeling (IF) and RNAscope in situ hybridization (ISH), respectively. Retinal tissue was IF labeled for myeloid cell marker, IBA-1 and flat-mounted. ISH for markers of infiltrating monocytes/macrophages (_CCR2_) and proinflammatory cytokines (_IL1A_, _C1QA_, _TNF_) was performed. Microglia were identified by IF of homeostatic microglial marker, P2RY12. Microscopy images wereanalyzed using Image J, QuPath and Imaris. Two-tailed unpaired t-test or Mann-Whitney test or ANOVA were used for between-group comparisons (p
Neuronal Representation of Social Information in the Medial Amygdala of Awake Behaving Mice

Cell.

2017 Oct 26

Li Y, Mathis A, Grewe BF, Osterhout JA, Ahanonu B, Schnitzer MJ, Murthy VN, Dulac C.
PMID: 29107332 | DOI: 10.1016/j.cell.2017.10.015

The medial amygdala (MeA) plays a critical role in processing species- and sex-specific signals that trigger social and defensive behaviors. However, the principles by which this deep brain structure encodes social information is poorly understood. We used a miniature microscope to image the Ca2+ dynamics of large neural ensembles in awake behaving mice and tracked the responses of MeA neurons over several months. These recordings revealed spatially intermingled subsets of MeA neurons with distinct temporal dynamics. The encoding of socialinformation in the MeA differed between males and females and relied on information from both individual cells and neuronal populations. By performing long-term Ca2+ imaging across different social contexts, we found that sexual experience triggers lasting and sex-specific changes in MeA activity, which, in males, involve signaling by oxytocin. These findings reveal basic principles underlying the brain's representation of social information and its modulation by intrinsic and extrinsic factors.

A Sparse, Spatially Biased Subtype of Mature Granule Cell Dominates Recruitment in Hippocampal-Associated Behaviors

Cell Rep

2020 Apr 28

Erwin SR, Sun W, Copeland M, Lindo S, Spruston N, Cembrowski MS
PMID: 32348756 | DOI: 10.1016/j.celrep.2020.107551

Animals can store information about experiences by activating specific neuronal populations, and subsequent reactivation of these neural ensembles can lead to recall of salient experiences. In the hippocampus, granule cells of the dentate gyrus participate in such memory engrams; however, whether there is an underlying logic to granule cell participation has not been examined. Here, we find that a range of novel experiences preferentially activates granule cells of the suprapyramidal blade relative to the infrapyramidal blade. Motivated by this, we identify a suprapyramidal-blade-enriched population of granule cells with distinct spatial, morphological, physiological, and developmental properties. Via transcriptomics, we map these traits onto a sparse and discrete granule cell subtype that is recruited at a 10-fold greater frequency than expected by subtype prevalence, constituting the majority of all recruited granule cells. Thus, in behaviors known to involve hippocampal-dependent memory formation, a rare and spatially localized subtype dominates overall granule cell recruitment.
Mapping visual functions onto molecular cell types in the mouse superior colliculus

Neuron

2023 Apr 18

Liu, Y;Savier, EL;DePiero, VJ;Chen, C;Schwalbe, DC;Abraham-Fan, RJ;Chen, H;Campbell, JN;Cang, J;
PMID: 37086721 | DOI: 10.1016/j.neuron.2023.03.036

The superficial superior colliculus (sSC) carries out diverse roles in visual processing and behaviors, but how these functions are delegated among collicular neurons remains unclear. Here, using single-cell transcriptomics, we identified 28 neuron subtypes and subtype-enriched marker genes from tens of thousands of adult mouse sSC neurons. We then asked whether the sSC's molecular subtypes are tuned to different visual stimuli. Specifically, we imaged calcium dynamics in single sSC neurons in vivo during visual stimulation and then mapped marker gene transcripts onto the same neurons ex vivo. Our results identify a molecular subtype of inhibitory neuron accounting for ∼50% of the sSC's direction-selective cells, suggesting a genetic logic for the functional organization of the sSC. In addition, our studies provide a comprehensive molecular atlas of sSC neuron subtypes and a multimodal mapping method that will facilitate investigation of their respective functions, connectivity, and development.
Topographic connectivity and cellular profiling reveal detailed input pathways and functionally distinct cell types in the subthalamic nucleus

Cell reports

2022 Mar 01

Jeon, H;Lee, H;Kwon, DH;Kim, J;Tanaka-Yamamoto, K;Yook, JS;Feng, L;Park, HR;Lim, YH;Cho, ZH;Paek, SH;Kim, J;
PMID: 35235786 | DOI: 10.1016/j.celrep.2022.110439

The subthalamic nucleus (STN) controls psychomotor activity and is an efficient therapeutic deep brain stimulation target in individuals with Parkinson's disease. Despite evidence indicating position-dependent therapeutic effects and distinct functions within the STN, the input circuit and cellular profile in the STN remain largely unclear. Using neuroanatomical techniques, we construct a comprehensive connectivity map of the indirect and hyperdirect pathways in the mouse STN. Our circuit- and cellular-level connectivities reveal a topographically graded organization with three types of indirect and hyperdirect pathways (external globus pallidus only, STN only, and collateral). We confirm consistent pathways into the human STN by 7 T MRI-based tractography. We identify two functional types of topographically distinct glutamatergic STN neurons (parvalbumin [PV+/-]) with synaptic connectivity from indirect and hyperdirect pathways. Glutamatergic PV+ STN neurons contribute to burst firing. These data suggest a complex interplay of information integration within the basal ganglia underlying coordinated movement control and therapeutic effects.
Neuronal atlas of the dorsal horn defines its architecture and links sensory input to transcriptional cell types.

Nat Neurosci.

2018 Apr 23

Häring M, Zeisel A, Hochgerner H, Rinwa P, Jakobsson JET, Lönnerberg P, La Manno G, Sharma N, Borgius L, Kiehn O, Lagerström MC, Linnarsson S, Ernfors P.
PMID: 29686262 | DOI: 10.1038/s41593-018-0141-1

The dorsal horn of the spinal cord is critical to processing distinct modalities of noxious and innocuous sensation, but little is known of the neuronal subtypes involved, hampering efforts to deduce principles governing somatic sensation. Here we used single-cell RNA sequencing to classify sensory neurons in the mouse dorsal horn. We identified 15 inhibitory and 15 excitatory molecular subtypes of neurons, equaling the complexity in cerebral cortex. Validating our classification scheme in vivo and matching cell types to anatomy of the dorsal horn by spatial transcriptomics reveals laminar enrichment for each of the cell types. Neuron types, when combined, define a multilayered organization with like neurons layered together. Employing our scheme, we find that heat and cold stimuli activate discrete sets of both excitatory and inhibitory neuron types. This work provides a systematic and comprehensive molecular classification of spinal cord sensory neurons, enabling functional interrogation of sensory processing.

Pages

  • « first
  • ‹ previous
  • …
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?