ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
J Cell Biochem.
2016 May 18
Anderson CM, Zhang B, Miller M, Butko E, Wu X, Laver T, Kernag C, Kim J, Luo Y, Lamparski H, Park E, Su N, Ma XJ.
PMID: 27191821 | DOI: 10.1002/jcb.25606.
Biomarkers such as DNA, RNA, and protein are powerful tools in clinical diagnostics and therapeutic development for many diseases. Identifying RNA expression at the single cell level within the morphological context by RNA in situ hybridization provides a great deal of information on gene expression changes over conventional techniques that analyze bulk tissue, yet widespread use of this technique in the clinical setting has been hampered by the dearth of automated RNA ISH assays. Here we present an automated version of the RNA ISH technology RNAscope that is adaptable to multiple automation platforms. The automated RNAscope assay yields a high signal-to-noise ratio with little to no background staining and results comparable to the manual assay. In addition, the automated duplex RNAscope assay was able to detect two biomarkers simultaneously. Lastly, assay consistency and reproducibility were confirmed by quantification of TATA-box binding protein (TBP) mRNA signals across multiple lots and multiple experiments. Taken together, the data presented in this study demonstrate that the automated RNAscope technology is a high performance RNA ISH assay with broad applicability in biomarker research and diagnostic assay development.
Blood
2023 Feb 07
Stewart, BJ;Fergie, M;Young, M;Jones, C;Sachdeva, A;Blain, AE;Bacon, CM;Rand, V;Ferdinand, JR;James, KR;Mahbubani, KT;Hook, CE;Jonas, N;Coleman, N;Saeb-Parsy, K;Collin, M;Clatworthy, M;Behjati, S;Carey, CD;
PMID: 36758207 | DOI: 10.1182/blood.2022015575
PLoS One.
2019 Apr 15
Duncan DJ, Scott M, Scorer P, Barker C.
PMID: 30986253 | DOI: 10.1371/journal.pone.0215393
Four immunohistochemistry (IHC) diagnostic assays have been approved for tumour PD-L1 protein assessment in the clinic. However, mRNA detection by in situ hybridisation (ISH) could be utilised as an alternative to protein detection. Detecting spatial changes in gene expression provides vital prognostic and diagnostic information, particularly in immune oncology where the phenotype, cellular infiltration and immune activity status may be associated with patient survival. Translation of mRNA expression to a clinically relevant cut off or threshold is challenging due to variability between assays and the detection of different analytes. These studies aim to confirm the suitability of formalin fixed paraffin embedded (FFPE) tissue sections for use with RNA ISH. A comparison of mRNA expression and protein expression may inform the suitability of mRNA as a patient selection biomarker in a similar manner to IHC and provide evidence of a suitable scoring algorithm. Ninety patient samples, thirty for each indication of non-small cell lung cancer (NSCLC), head and neck squamous cell carcinoma (HNSCC) and urothelial carcinoma (UC), previously assessed using the VENTANA PD-L1 (SP263) Assay were chosen to represent a wide dynamic range of percentage tumour cell staining (TCIHC). Expression of mRNA was assessed by ISH using the RNAScope 2.5 assay and probe CD274/PD-L1 (Advanced Cell Diagnostics) including kit provided positive and negative control probes. Brightfield whole slide images of tissues were captured. The percentage of tumour cells with PD-L1 mRNA expression (%TCmRNA) and mean punctate dots/tumour cell were determined using image analysis. Differences in RNA expression between the IHC derived TCIHC≥25% and <25% groups were assessed using t-tests. For each indication, a receiver-operating characteristic (ROC) analysis identified thresholds for patient classification using %TCmRNA and dots/tumour cell, with reference to TCIHC≥25%. Eighty-six samples were successfully tested; 3 failed due to insufficient control probe staining, 1 due to lack of tumour. Percent TCmRNA staining using RNAScope demonstrated statistical significance (at α = 0.05) in the PD-L1 high (TCIHC ≥25%) vs the PD-L1 low (TCIHC <25%) groups for NSCLC, HNSCC, and UC. The number of punctate dots/tumour cell was significantly higher in the PD-L1 high vs the PD-L1 low groups for NSCLC and HNSCC but not UC. For %TCmRNA; ROC analysis identified thresholds of: NSCLC 18.0%, HNSCC 31.8%, UC 25.8%. For dots/tumour cell, thresholds were: NSCLC 0.26, HNSCC 0.53, UC 0.45. Routine tissue fixation and processing is suitable for RNA detection using RNAScope. PD-L1 mRNA extent and level is associated with PD-L1 status determined by IHC. Threshold optimisation for %TCmRNA and mean dots/tumour cell results in high specificity to IHC PD-L1 classification, but only moderate sensitivity.
Proceedings of the National Academy of Sciences of the United States of America
2021 Mar 30
Mifflin, L;Hu, Z;Dufort, C;Hession, CC;Walker, AJ;Niu, K;Zhu, H;Liu, N;Liu, JS;Levin, JZ;Stevens, B;Yuan, J;Zou, C;
PMID: 33766915 | DOI: 10.1073/pnas.2025102118
The Journal of pathology
2022 Nov 24
Tang, WC;Tsao, SW;Jones, GE;Liu, X;Tsai, MH;Delecluse, HJ;Dai, W;You, C;Zhang, J;Huang, SCM;Leung, MM;Liu, T;Ching, YP;Chen, H;Lo, KW;Li, X;Tsang, CM;
PMID: 36420735 | DOI: 10.1002/path.6036
JCI insight
2021 Jun 08
Stone, ML;Lee, J;Herrera, VM;Graham, K;Lee, JW;Huffman, A;Coho, H;Tooker, E;Myers, MI;Giannone, M;Li, Y;Buckingham, TH;Long, KB;Beatty, GL;
PMID: 34101617 | DOI: 10.1172/jci.insight.146314
Cell host & microbe
2022 Aug 25
Gao, J;Zhao, X;Hu, S;Huang, Z;Hu, M;Jin, S;Lu, B;Sun, K;Wang, Z;Fu, J;Weersma, RK;He, X;Zhou, H;
PMID: 36049483 | DOI: 10.1016/j.chom.2022.08.002
Investigative Ophthalmology & Visual Science
2022 Jan 01
Oikawa, K;Kiland, J;Mathu, V;Torne, O;
J Thorac Oncol.
2016 Sep 14
Yu H, Batenchuk C, Badzio A, Boyle TA, Czapiewski P, Chan DC, Lu X, Gao D, Ellison K, Kowalewski AA, Rivard CJ, Dziadziuszko R, Zhou C, Hussein M, Richards D, Wilks S, Monte M, Edenfield W, Goldschmidt J, Page R, Ulrich B, Waterhouse D, Close S, Jassem J,
PMID: 27639678 | DOI: 10.1016/j.jtho.2016.09.002
This article does not have an abstract to display.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com