Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (8)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope 2.5 HD Red assay (2) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope (1) Apply RNAscope filter
  • RNAscope 2.5 HD Brown Assay (1) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (1) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope Multiplex Fluorescent Assay (1) Apply RNAscope Multiplex Fluorescent Assay filter

Research area

  • Cancer (2) Apply Cancer filter
  • Immunology (2) Apply Immunology filter
  • Other (2) Apply Other filter
  • Cardiology (1) Apply Cardiology filter
  • Development (1) Apply Development filter
  • Heart Regeneration (1) Apply Heart Regeneration filter
  • Infectious (1) Apply Infectious filter
  • Infectious Disease (1) Apply Infectious Disease filter
  • Neuroscience (1) Apply Neuroscience filter
  • Progenitor Cells (1) Apply Progenitor Cells filter

Category

  • Publications (8) Apply Publications filter
Transcription Factor GATA6: A Novel Marker and Putative Inducer of Ductal Metaplasia in Biliary Atresia.

Am J Physiol Gastrointest Liver Physiol.

2018 Feb 01

Soini T, Pihlajoki M, Andersson N, Lohi J, Huppert KA, Rudnick DA, Huppert SS, Wilson DB, Pakarinen MP, Heikinheimo M.
PMID: 29388792 | DOI: 10.1152/ajpgi.00362.2017

Biliary atresia (BA), a neonatal liver disease, is characterized by obstruction of extrahepatic bile ducts with subsequent cholestasis, inflammation, and progressive liver fibrosis. To gain insights into the pathophysiology of BA, we focused attention on GATA6, a transcription factor implicated in biliary development. Early in fetal development GATA6 expression is evident in cholangiocytes and hepatocytes, but by late gestation it is extinguished in hepatocytes. Utilizing a unique set of BA liver samples collected before and after successful portoenterostomy (PE), we found that GATA6 expression is markedly upregulated in hepatocytes of patients with BA compared to healthy and cholestatic disease controls. This upregulation is recapitulated in two murine models simulating bile duct obstruction and intrahepatic bile ductule expansion. GATA6 expression in BA livers correlates with two established negative prognostic indicators (age at PE, degree of intrahepatic bile ductule expansion) and decreases after normalization of serum bilirubin by PE. GATA6 expression in BA livers correlates with expression of known regulators of cholangiocyte differentiation ( JAGGED1, HNF1β, and HNF6). These same genes are upregulated after enforced expression of GATA6 in human hepatocyte cell models. In conclusion, GATA6 is a novel marker and a putative driver of hepatocyte-cholangiocyte metaplasia in BA and its expression in hepatocytes is downregulated after successful PE.

Dysregulation of TNF-? and IFN-? expression is a common host immune response in a chronically infected mouse model of melioidosis when comparing multiple human strains of Burkholderia pseudomallei

BMC immunol

2020 Feb 03

Amemiya K, Dankmeyer JL, Bearss JJ, Zeng X, Stonier SW, Soffler C, Cote CK, Welkos SL, Fetterer DP, Chance TB, Trevino SR, Worsham PL, Waag DM
PMID: 32013893 | DOI: 10.1186/s12865-020-0333-9

BACKGROUND: Melioidosis is endemic in Southeast Asia and Northern Australia and is caused by the Gram-negative, facultative intracellular pathogen Burkholderia pseudomallei. Diagnosis of melioidosis is often difficult because of the protean clinical presentation of the disease, and it may mimic other diseases, such as tuberculosis. There are many different strains of B. pseudomallei that have been isolated from patients with melioidosis, but it was not clear if they could cause a similar disease in a chronic BALB/c murine model of melioidosis. Hence, we wanted to examine chronically infected mice exposed to different strains of B. pseudomallei to determine if there were differences in the host immune response to the pathogen. RESULTS: We identified common host immune responses exhibited in chronically infected BALB/c mice, although there was some heterogeneity in the host response in chronically infected mice after exposure to different strains of B. pseudomallei. They all displayed pyogranulomatous lesions in their spleens with a large influx of monocytes/macrophages, NK cells, and neutrophils identified by flow cytometry. Sera from chronically infected mice by ELISA exhibited elevated IgG titers to the pathogen, and we detected by Luminex micro-bead array technology a significant increase in the expression of inflammatory cytokines/chemokines, such as IFN-?, IL-1?, IL-1?, KC, and MIG. By immunohistochemical and in situ RNA hybridization analysis we found that the increased expression of proinflammatory cytokines (IL-1?, IL-1?, TNF-?, IFN-?) was confined primarily to the area with the pathogen within pyogranulomatous lesions. We also found that cultured splenocytes from chronically infected mice could express IFN-?, TNF-?, and MIP-1? ex vivo without the need for additional exogenous stimulation. In addition by flow cytometry, we detected significant amounts of intracellular expression of TNF-? and IFN-? without a protein transport blocker in monocytes/macrophages, NK cells, and neutrophils but not in CD4+ or CD8+ T cells in splenocytes from chronically infected mice. CONCLUSION: Taken together the common features we have identified in chronically infected mice when 10 different human clinical strains of B. pseudomallei were examined could serve as biomarkers when evaluating potential therapeutic agents in mice for the treatment of chronic melioidosis in humans
Mesothelium-Derived Factors Shape GATA6-Positive Large Cavity Macrophages

Journal of immunology (Baltimore, Md. : 1950)

2022 Jul 22

Lai, CW;Bagadia, P;Barisas, DAG;Jarjour, NN;Wong, R;Ohara, T;Muegge, BD;Lu, Q;Xiong, S;Edelson, BT;Murphy, KM;Stappenbeck, TS;
PMID: 35868637 | DOI: 10.4049/jimmunol.2200278

The local microenvironment shapes macrophage differentiation in each tissue. We hypothesized that in the peritoneum, local factors in addition to retinoic acid can support GATA6-driven differentiation and function of peritoneal large cavity macrophages (LCMs). We found that soluble proteins produced by mesothelial cells lining the peritoneal cavity maintained GATA6 expression in cultured LCMs. Analysis of global gene expression of isolated mesothelial cells highlighted mesothelin (Msln) and its binding partner mucin 16 (Muc16) as candidate secreted ligands that potentially regulate GATA6 expression in peritoneal LCMs. Mice deficient for either of these molecules showed diminished GATA6 expression in peritoneal and pleural LCMs that was most prominent in aged mice. The more robust phenotype in older mice suggested that monocyte-derived macrophages were the target of Msln and Muc16. Cell transfer and bone marrow chimera experiments supported this hypothesis. We found that lethally irradiated Msln-/- and Muc16-/- mice reconstituted with wild-type bone marrow had lower levels of GATA6 expression in peritoneal and pleural LCMs. Similarly, during the resolution of zymosan-induced inflammation, repopulated peritoneal LCMs lacking expression of Msln or Muc16 expressed diminished GATA6. These data support a role for mesothelial cell-produced Msln and Muc16 in local macrophage differentiation within large cavity spaces such as the peritoneum. The effect appears to be most prominent on monocyte-derived macrophages that enter into this location as the host ages and also in response to infection.
BDNF produced by cerebral microglia promotes cortical plasticity and pain hypersensitivity after peripheral nerve injury

PLoS biology

2021 Jul 22

Huang, L;Jin, J;Chen, K;You, S;Zhang, H;Sideris, A;Norcini, M;Recio-Pinto, E;Wang, J;Gan, WB;Yang, G;
PMID: 34292944 | DOI: 10.1371/journal.pbio.3001337

Peripheral nerve injury-induced mechanical allodynia is often accompanied by abnormalities in the higher cortical regions, yet the mechanisms underlying such maladaptive cortical plasticity remain unclear. Here, we show that in male mice, structural and functional changes in the primary somatosensory cortex (S1) caused by peripheral nerve injury require neuron-microglial signaling within the local circuit. Following peripheral nerve injury, microglia in the S1 maintain ramified morphology and normal density but up-regulate the mRNA expression of brain-derived neurotrophic factor (BDNF). Using in vivo two-photon imaging and Cx3cr1CreER;Bdnfflox mice, we show that conditional knockout of BDNF from microglia prevents nerve injury-induced synaptic remodeling and pyramidal neuron hyperactivity in the S1, as well as pain hypersensitivity in mice. Importantly, S1-targeted removal of microglial BDNF largely recapitulates the beneficial effects of systemic BDNF depletion on cortical plasticity and allodynia. Together, these findings reveal a pivotal role of cerebral microglial BDNF in somatosensory cortical plasticity and pain hypersensitivity.
GATA6 and CK5 stratify the survival of patients with pancreatic cancer undergoing neoadjuvant chemotherapy

Modern Pathology

2023 Jan 01

Kokumai, T;Omori, Y;Ishida, M;Ohtsuka, H;Mizuma, M;Nakagawa, K;Chiho, M;Ono, Y;Mizukami, Y;Miura, S;Kume, K;Masamune, A;Morikawa, T;Unno, M;Furukawa, T;
| DOI: 10.1016/j.modpat.2023.100102

Relevant protein expression of GATA6, CK5, vimentin, and mucins using immunohistochemistry was assessed for predicting the prognosis and chemotherapy efficacy in pancreatic cancer (PC). The protein expression was examined in 159 PCs resected after neoadjuvant chemotherapy (NAC-PCs) with 120 matched biopsy specimens taken before NAC. KRAS mutations were assessed by digital PCR. NAC-PCs were classified by GATA6 expression initially and CK5 expression subsequently into four types, i.e., classical type (n = 22) showing GATA6-high (≧ 50%)/CK5-low (< 10%), hybrid type (n = 45) showing GATA6-high/CK5-high (≧ 10%), basal-like type (n = 53) showing GATA6-low (< 50%)/CK5-high (≧ 30%), and null type (n = 39) showing GATA6-low/CK5-low (< 30%), which resulted in a well-stratification of the patients’ prognosis. The classical type showed the most favorable prognosis, while the null type showed the worst prognosis (multivariate hazard ratio 3.56, 95% confidence interval (CI) 1.63−7.77, p = 0.0015). The hybrid and basal-like types were in between. The risk for hepatic recurrence was lower in the classical type than null (multivariate odds ratio (mOR) 0.18, CI 0.04−0.96, p = 0.0449) and basal-like (mOR 0.24, CI 0.05−1.16, p = 0.0750) types. In contrast, the risk for loco-regional recurrence was higher in classical type than the basal-like type (mOR 5.03, CI 1.20−21.1, p = 0.0272). The hybrid type was subclassified into transition and co-expression patterns with different gastric mucin expression. Vimentin-high (≧ 10%, n = 30) in pre-NAC-PC tissues was associated with poor prognosis (p = 0.0256). Phenotypic transitions between pre- and post-NAC were common (73/120; 61%). PCs with NAC regression grades 2 and 3 showed a transition to poorer prognostic phenotypes (p = 0.0497). KRAS mutations were not associated with these phenotypes. In conclusion, GATA6 and CK5 immunohistochemical expression phenotypes may stratify the survival of NAC-PCs and reflect post-NAC phenotypic transitions associated with poor prognosis. Prompt evaluation of immunohistochemical phenotypes may contribute to designing a precision therapeutic strategy for PC patients.
Early Pulmonary Lesions in Cattle Infected via Aerosolized Mycobacterium bovis

Vet Pathol

2019 Mar 21

Palmer MV, Wiarda J, Kanipe C and Thacker TC
PMID: 30895908 | DOI: 10.1177/0300985819833454

Mycobacterium bovis is a serious zoonotic pathogen and the cause of tuberculosis in many mammalian species, most notably, cattle. The hallmark lesion of tuberculosis is the granuloma. It is within the developing granuloma where host and pathogen interact; therefore, it is critical to understand host-pathogen interactions at the granuloma level. Cytokines and chemokines drive cell recruitment, activity, and function and ultimately determine the success or failure of the host to control infection. In calves, early lesions (ie, 15 and 30 days) after experimental aerosol infection were examined microscopically using in situ hybridization and immunohistochemistry to demonstrate early infiltrates of CD68+ macrophages within alveoli and alveolar interstitium, as well as the presence of CD4, CD8, and gammadelta T cells. Unlike lesions at 15 days, lesions at 30 days after infection contained small foci of necrosis among infiltrates of macrophages, lymphocytes, neutrophils, and multinucleated giant cells and extracellular acid-fast bacilli within necrotic areas. At both time points, there was abundant expression of the chemokines CXCL9, MCP-1/CCL2, and the cytokine transforming growth factor (TGF)-beta. The proinflammatory cytokines tumor necrosis factor (TNF)-alpha and interleukin (IL)-1beta, as well as the anti-inflammatory cytokine IL-10, were expressed at moderate levels at both time points, while expression of IFN-gamma was limited. These findings document the early pulmonary lesions after M. bovis infection in calves and are in general agreement with the proposed pathogenesis of tuberculosis described in laboratory animal and nonhuman primate models of tuberculosis.
Genomics-Driven Precision Medicine for Advanced Pancreatic Cancer: Early Results from the COMPASS Trial

Clin Cancer Res.

2017 Dec 29

Aung KL, Fischer SE, Denroche RE, Jang GH, Dodd A, Creighton S, Southwood B, Liang SB, Chadwick D, Zhang A, O'Kane GM, Albaba H, Moura S, Grant RC, Miller JK, Mbabaali F, Pasternack D, Lungu IM, Bartlett JMS, Ghai S, Lemire M, Holter S, Connor AA, Moffitt
PMID: 29288237 | DOI: 10.1158/1078-0432.CCR-17-2994

Abstract

Purpose: To perform real-time whole genome sequencing (WGS) and RNA sequencing (RNASeq) of advanced pancreatic ductal adenocarcinoma (PDAC) to identify predictive mutational and transcriptional features for better treatment selection.Experimental Design:Patients with advanced PDAC were prospectively recruited prior to first-line combination chemotherapy. Fresh tumor tissue was acquired by image-guided percutaneous core biopsy for WGS and RNASeq. Laser capture microdissection was performed for all cases. Primary endpoint was feasibility to report WGS results prior to first disease assessment CT scan at 8 weeks. The main secondary endpoint was discovery of patient subsets with predictive mutational and transcriptional signatures.Results: Sixty-three patients underwent a tumor biopsy between December 2015 and June 2017. WGS and RNASeq were successful in 62 (98%) and 60 (95%), respectively. Genomic results were reported at a median of 35 days (range, 19-52 days) from biopsy, meeting the primary feasibility endpoint. Objective responses to first-line chemotherapy were significantly better in patients with the classical PDAC RNA subtype compared with those with the basal-like subtype (P = 0.004). The best progression-free survival was observed in those with classical subtype treated with m-FOLFIRINOX. GATA6 expression in tumor measured by RNA in situ hybridization was found to be a robust surrogate biomarker for differentiating classical and basal-like PDAC subtypes. Potentially actionable genetic alterations were found in 30% of patients.Conclusions: Prospective genomic profiling of advanced PDAC is feasible, and our early data indicate that chemotherapy response differs among patients with different genomic/transcriptomic subtypes.

Epicardium-derived cells organize through tight junctions to replenish cardiac muscle in salamanders

Nature cell biology

2022 May 01

Eroglu, E;Yen, CYT;Tsoi, YL;Witman, N;Elewa, A;Joven Araus, A;Wang, H;Szattler, T;Umeano, CH;Sohlmér, J;Goedel, A;Simon, A;Chien, KR;
PMID: 35550612 | DOI: 10.1038/s41556-022-00902-2

The contribution of the epicardium, the outermost layer of the heart, to cardiac regeneration has remained controversial due to a lack of suitable analytical tools. By combining genetic marker-independent lineage-tracing strategies with transcriptional profiling and loss-of-function methods, we report here that the epicardium of the highly regenerative salamander species Pleurodeles waltl has an intrinsic capacity to differentiate into cardiomyocytes. Following cryoinjury, CLDN6+ epicardium-derived cells appear at the lesion site, organize into honeycomb-like structures connected via focal tight junctions and undergo transcriptional reprogramming that results in concomitant differentiation into de novo cardiomyocytes. Ablation of CLDN6+ differentiation intermediates as well as disruption of their tight junctions impairs cardiac regeneration. Salamanders constitute the evolutionarily closest species to mammals with an extensive ability to regenerate heart muscle and our results highlight the epicardium and tight junctions as key targets in efforts to promote cardiac regeneration.
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?