Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (11)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (108) Apply TBD filter
  • HPV E6/E7 (75) Apply HPV E6/E7 filter
  • Lgr5 (61) Apply Lgr5 filter
  • PD-L1 (25) Apply PD-L1 filter
  • HPV-HR18 (20) Apply HPV-HR18 filter
  • Axin2 (19) Apply Axin2 filter
  • HPV (19) Apply HPV filter
  • GLI1 (15) Apply GLI1 filter
  • HER2 (15) Apply HER2 filter
  • FGFR1 (13) Apply FGFR1 filter
  • MALAT1 (12) Apply MALAT1 filter
  • CD68 (11) Apply CD68 filter
  • Ifng (10) Apply Ifng filter
  • MYC (10) Apply MYC filter
  • CXCL10 (9) Apply CXCL10 filter
  • OLFM4 (9) Apply OLFM4 filter
  • AR-V7 (8) Apply AR-V7 filter
  • EBER1 (8) Apply EBER1 filter
  • CD274 (7) Apply CD274 filter
  • ETV1 (7) Apply ETV1 filter
  • GREM1 (7) Apply GREM1 filter
  • HOTAIR (7) Apply HOTAIR filter
  • OLFM4 (7) Apply OLFM4 filter
  • TERT (7) Apply TERT filter
  • HPV HR18 (7) Apply HPV HR18 filter
  • AR (6) Apply AR filter
  • (-) Remove BRCA1 filter BRCA1 (6)
  • CD3E (6) Apply CD3E filter
  • CD4 (6) Apply CD4 filter
  • MET (6) Apply MET filter
  • CSF1 (6) Apply CSF1 filter
  • Ccl2 (6) Apply Ccl2 filter
  • Ptch1 (6) Apply Ptch1 filter
  • FGFR2 (6) Apply FGFR2 filter
  • Vegfa (6) Apply Vegfa filter
  • PDGFRA (6) Apply PDGFRA filter
  • CXCL12 (6) Apply CXCL12 filter
  • HPV18 (6) Apply HPV18 filter
  • Il-6 (6) Apply Il-6 filter
  • CD3 (6) Apply CD3 filter
  • SOX2 (5) Apply SOX2 filter
  • EGFR (5) Apply EGFR filter
  • ESR1 (5) Apply ESR1 filter
  • DUSP6 (5) Apply DUSP6 filter
  • MDM2 (5) Apply MDM2 filter
  • MKI67 (5) Apply MKI67 filter
  • NOTUM (5) Apply NOTUM filter
  • PTEN (5) Apply PTEN filter
  • Cxcl1 (5) Apply Cxcl1 filter
  • HPV16 (5) Apply HPV16 filter

Product

  • RNAscope 2.0 Assay (4) Apply RNAscope 2.0 Assay filter
  • RNAscope (1) Apply RNAscope filter
  • RNAscope 2.5 HD Duplex (1) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 HD Red assay (1) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.5 VS Assay (1) Apply RNAscope 2.5 VS Assay filter
  • RNAscope Fluorescent Multiplex Assay (1) Apply RNAscope Fluorescent Multiplex Assay filter

Research area

  • (-) Remove Cancer filter Cancer (11)
  • Inflammation (2) Apply Inflammation filter
  • Immunotherapy (1) Apply Immunotherapy filter

Category

  • Publications (11) Apply Publications filter
BRCA1 germline mutation and glioblastoma development: report of cases

BMC Cancer 15.1 (2015): 1-7.

Boukerroucha M, Josse C, Segers K, El-Guendi S, Frères P, Jerusalem G, Bours V.

Background Germline mutations in breast cancer susceptibility gene 1 (BRCA1) increase the risk of breast and ovarian cancers. However, no association between BRCA1 germline mutation and glioblastoma malignancy has ever been highlighted. Here we report two cases of BRCA1 mutated patients who developed a glioblastoma multiform (GBM). Cases presentation: Two patients diagnosed with triple negative breast cancer (TNBC) were screened for BRCA1 germline mutation. They both carried a pathogenic mutation introducing a premature STOP codon in the exon 11 of the BRCA1 gene. Few years later, both patients developed a glioblastoma and a second breast cancer. In an attempt to clarify the role played by a mutated BRCA1 allele in the GBM development, we investigated the BRCA1 mRNA and protein expression in breast and glioblastoma tumours for both patients. The promoter methylation status of this gene was also tested by methylation specific PCR as BRCA1 expression is also known to be lost by this mechanism in some sporadic breast cancers. Conclusion: Our data show that BRCA1 expression is maintained in glioblastoma at the protein and the mRNA levels, suggesting that loss of heterozygosity (LOH) did not occur in these cases. The protein expression is tenfold higher in the glioblastoma of patient 1 than in her first breast carcinoma, and twice higher in patient 2. In agreement with the high protein expression level in the GBM, BRCA1 promoter methylation was not observed in these tumours. In these two cases, despite of a BRCA1 pathogenic germline mutation, the tumour-suppressor protein expression is maintained in GBM, suggesting that the BRCA1 mutation is not instrumental for the GBM development.
TNF-α expression, risk factors, and inflammatory exposures in ovarian cancer: evidence for an inflammatory pathway of ovarian carcinogenesis?

Human Pathology

2016 Apr 08

Gupta M, Babic A, Beck AH, Terry K.
PMID: - | DOI: 10.1016/j.humpath.2016.03.006

Inflammatory cytokines, like tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6), are elevated in ovarian cancer. Differences in cytokine expression by histologic subytpe or ovarian cancer risk factors can provide useful insight into ovarian cancer risk and etiology. We used ribonucleic acid (RNA) in-situ hybridization to assess TNF-α and IL-6 expression on tissue microarray slides from 78 epithelial ovarian carcinomas (51 serous, 12 endometrioid, 7 clear cell, 2 mucinous, 6 other) from a population-based case control study. Cytokine expression was scored semi-quantitatively and odds ratios (OR) and 95% confidence intervals (CI) were calculated using polytomous logistic regression. TNF-α was expressed in 46% of the tumors while sparse IL-6 expression was seen only 18% of the tumors. For both markers, expression was most common in high grade serous carcinomas followed by endometrioid carcinomas. Parity was associated with a reduced risk of TNF-α positive (OR = 0.3, 95% CI: 0.1-0.7 for 3 or more children versus none) but not TNF-α negative tumors (p-heterogeneity = 0.02). In contrast, current smoking was associated with a nearly three fold increase in risk of TNF-α negative (OR = 2.8, 95% CI: 1.2, 6.6) but not TNF-α positive tumors (p-heterogeneity = 0.06). Our data suggests that TNF-α expression in ovarian carcinoma varies by histologic subtype and provides some support for the role of inflammation in ovarian carcinogenesis. The novel associations detected in our study need to be validated in a larger cohort of patients in future studies.

Co-Detection of miR-21 and TNF-α mRNA in Budding Cancer Cells in Colorectal Cancer.

Int J Mol Sci.

2019 Apr 17

Møller T, James JP, Holmstrøm K, Sørensen FB, Lindebjerg J, Nielsen BS.
PMID: 30999696 | DOI: 10.3390/ijms20081907

MicroRNA-21 (miR-21) is upregulated in many cancers including colon cancers and is a prognostic indicator of recurrence and poor prognosis. In colon cancers, miR-21 is highly expressed in stromal fibroblastic cells and more weakly in a subset of cancer cells, particularly budding cancer cells. Exploration of the expression of inflammatory markers in colon cancers revealed tumor necrosis factor alpha (TNF-α) mRNA expression at the invasive front of colon cancers. Surprisingly, a majority of the TNF-α mRNA expressing cells were found to be cancer cells and not inflammatory cells. Because miR-21 is positively involved in cell survival and TNF-α promotes necrosis, we found it interesting to analyze the presence of miR-21 in areas of TNF-α mRNA expression at the invasive front of colon cancers. For this purpose, we developed an automated procedure for the co-staining of miR-21, TNF-α mRNA and the cancer cell marker cytokeratin based on analysis of frozen colon cancer tissue samples (n = 4) with evident cancer cell budding. In all four cases, TNF-α mRNA was seen in a small subset of cancer cells at the invasive front. Evaluation of miR-21 and TNF-α mRNA expression was performed on digital slides obtained by confocal slide scanning microscopy. Both co-expression and lack of co-expression with miR-21 in the budding cancer cells was noted, suggesting non-correlated expression. miR-21 was more often seen in cancer cells than TNF-α mRNA. In conclusion, we report that miR-21 is not linked to expression of the pro-inflammatory cytokine TNF-α mRNA, but that miR-21 and TNF-α both take part in the cancer expansion at the invasive front of colon cancers. We hypothesize that miR-21 may protect both fibroblasts and cancer cells from cell death directed by TNF-α paracrine and autocrine activity.

Evaluation of BRCA1-related molecular features and microRNAs as prognostic factors for triple negative breast cancers.

BMC Cancer.

2015 Oct 21

Boukerroucha M, Josse C, ElGuendi S, Boujemla B, Frères P, Marée R, Wenric S, Segers K, Collignon J, Jerusalem G, Bours V.
PMID: 26490435 | DOI: 10.1186/s12885-015-1740-9.

Abstract

BACKGROUND:
The BRCA1 gene plays a key role in triple negative breast cancers (TNBCs), in which its expression can be lost by multiple mechanisms: germinal mutation followed by deletion of the second allele; negative regulation by promoter methylation; or miRNA-mediated silencing. This study aimed to establish a correlation among the BRCA1-related molecular parameters, tumor characteristics and clinical follow-up of patients to find new prognostic factors.

METHODS:
BRCA1 protein and mRNA expression was quantified in situ in the TNBCs of 69 patients. BRCA1 promoter methylation status was checked, as well as cytokeratin 5/6 expression. Maintenance of expressed BRCA1 protein interaction with BARD1 was quantified, as a marker of BRCA1 functionality, and the tumor expression profiles of 27 microRNAs were determined.

RESULTS:
miR-548c-5p was emphasized as a new independent prognostic factor in TNBC. A combination of the tumoral expression of miR-548c and three other known prognostic parameters (tumor size, lymph node invasion and CK 5/6 expression status) allowed for relapse prediction by logistic regression with an area under the curve (AUC) = 0.96. BRCA1 mRNA and protein in situ expression, as well as the amount of BRCA1 ligated to BARD1 in the tumor, lacked any associations with patient outcomes, likely due to high intratumoral heterogeneity, and thus could not be used for clinical purposes.

CONCLUSIONS:
In situ BRCA1-related expression parameters could be used for clinical purposes at the time of diagnosis. In contrast, miR-548c-5p showed a promising potential as a prognostic factor in TNBC.

Functional ex vivo assay reveals homologous recombination deficiency in breast cancer beyond BRCA gene defects

Clin Cancer Res.

2018 Aug 23

Meijer TG, Verkaik NS, Sieuwerts AM, van Riet J, Naipal KAT, van Deurzen CHM, den Bakker M, Sleddens HFBM, Dubbink HJ, den Toom TD, Dinjens WNM, Lips EH, Nederlof PM, Smid M, van de Werken HJG, Kanaar R, Martens JWM, Jager A, van Gent DC.
PMID: 30139880 | DOI: 10.1158/1078-0432.CCR-18-0063

Abstract

PURPOSE:

Tumors of germline BRCA1/2 mutated carriers show homologous recombination (HR) deficiency (HRD), resulting in impaired DNA double strand break (DSB) repair and high sensitivity to Poly-(ADP-Ribose)-Polymerase (PARP) inhibitors. Although this therapy is expected to be effective beyond germline BRCA1/2 mutated carriers, a robust validated test to detect HRD tumors is lacking. In the present study we therefore evaluated a functional HR assay exploiting the formation of RAD51 foci in proliferating cells after ex vivo irradiation of fresh breast cancers (BrC) tissue: the RECAP test.

METHODS:

Fresh samples of 170 primary BrC were analyzed using the RECAP test. The molecular explanation for the HRD phenotype was investigated by exploring BRCA deficiencies, mutational signatures, tumor infiltrating lymphocytes (TILs) and microsatellite instability (MSI).

RESULTS:

RECAP was completed successfully in 148 out of 170 samples (87%). 24 tumors showed HRD (16%), while 6 tumors were HR intermediate (HRi) (4%). HRD was explained by BRCA deficiencies (mutations, promoter hypermethylation, deletions) in 16 cases, whereas 7 HRD tumors were non-BRCA related. HRD tumors showed an increased incidence of high TIL counts (p=0.023) compared to HR proficient (HRP) tumors and MSI was more frequently observed in the HRD group (2/20, 10%) than expected in BrC (1%) (p=0.017).

CONCLUSION:

RECAP is a robust functional HR assay detecting both BRCA1/2 deficient and BRCA1/2 proficient HRD tumors. Functional assessment of HR in a pseudo-diagnostic setting is achievable and produces robust and interpretable results.

Tissue-resident memory T cells in immune-related adverse events: friend or foe?

Oncoimmunology

2023 Apr 04

Reschke, R;Gajewski, TF;
PMID: 37035636 | DOI: 10.1080/2162402X.2023.2197358

Many cancer patients experience toxicity during checkpoint blockade immunotherapy, which often leads to treatment discontinuation. To this end, understanding the mechanisms mediating immune-related adverse events (irAE) should ultimately enable improvement in clinical outcomes. Recent work has revealed that tissue-resident memory T (TRM) cells are locally expanded in irAE-dermatitis and -colitis.
Quantifying BRCA1 and BRCA2 mRNA Isoform Expression Levels in Single Cells

Int J Mol Sci.

2019 Feb 06

Lattimore VL, Pearson JF, Morley-Bunker AE, Investigators kConFab, Spurdle, Robinson AB, Currie BA, Walker MJ, Logan C.
PMID: 30736279 | DOI: 10.3390/ijms20030693

BRCA1 and BRCA2 spliceogenic variants are often associated with an elevated risk of breast and ovarian cancers. Analyses of BRCA1 and BRCA2 splicing patterns have traditionally used technologies that sample a population of cells but do not account for the variation that may be present between individual cells. This novel proof of concept study utilises RNA in situ hybridisation to measure the absolute expression of BRCA1 and BRCA2 mRNA splicing events in single lymphoblastoid cells containing known spliceogenic variants (BRCA1c.671-2 A>G or BRCA2c.7988 A>T). We observed a large proportion of cells (>42%) in each sample that did not express mRNA for the targeted gene. Increased levels (average mRNA molecules per cell) of BRCA2 ∆17_18 were observed in the cells containing the known spliceogenic variant BRCA2c.7988 A>T, but cells containing BRCA1c.671-2 A>G were not found to express significantly increased levels of BRCA1 ∆11, as had been shown previously. Instead, we show for each variant carrier sample that a higher proportion of cells expressed the targeted splicing event compared to control cells. These results indicate that BRCA1/2 mRNA is expressed stochastically, suggesting that previously reported results using RT-PCR may have been influenced by the number of cells with BRCA1/2 mRNA expression and may not represent an elevation of constitutive mRNA expression. Detection of mRNA expression in single cells allows for a more comprehensive understanding of how spliceogenic variants influence the expression of mRNA isoforms. However, further research is required to assess the utility of this technology to measure the expression of predicted spliceogenic BRCA1 and BRCA2 variants in a diagnostic setting.

TNF-α-producing macrophages determine subtype identity and prognosis via AP1 enhancer reprogramming in pancreatic cancer

Nature Cancer

2021 Nov 01

Tu, M;Klein, L;Espinet, E;Georgomanolis, T;Wegwitz, F;Li, X;Urbach, L;Danieli-Mackay, A;Küffer, S;Bojarczuk, K;Mizi, A;Günesdogan, U;Chapuy, B;Gu, Z;Neesse, A;Kishore, U;Ströbel, P;Hessmann, E;Hahn, S;Trumpp, A;Papantonis, A;Ellenrieder, V;Singh, S;
| DOI: 10.1038/s43018-021-00258-w

A,B, Expression correlation analysis in 78 PDAC patient tumors12 [/articles/s43018-021-00258-w#ref-CR12] (E-MTAB-6134 [http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-6134/]) with high tumor cellularity between cJUN and VIM (A) as well as GATA6 and VIM (B). RMA-normalized probe intensity values were plotted. A linear regression with 95% CI is shown in orange. Pearson’s correlation (_R_) and corresponding two-tailed _P_ value are indicated. C, Representative bright-field images of GCDX62 cells transduced with empty vector (EV) or cJUN overexpression (cJUN-OE) constructs. Morphology was monitored over several passages. D-F, RNA-seq analysis was performed on GCDX62 cells transduced with EV or cJUN-OE. n = 3 independent cultures. D, PCA plot. E,F, Enrichment plots for gene set enrichment analysis between cJUN-OE and EV samples for ‘classical’ and ‘quasi-mesenchymal’ PDAC13 [/articles/s43018-021-00258-w#ref-CR13] (E), as well as the top genes up- and downregulated following TNFα treatment in CLA (CAPAN1) cells (F). G, WB for indicated targets in CAPAN1 cells transduced with EV or cJUN-OE. Representative of n = 3 independent experiments. H, Representative bright-field images of CAPAN1 cells transduced with EV or cJUN-OE. Morphology was monitored over several passages. C,H, Scale bar: 200 µm. I,J, Trans-well invasion assay of CAPAN1 cells transduced with EV or cJUN-OE, showing representative DAPI staining of invaded cells (I) as well as quantification thereof (J). I, Scale bar: 100 µm. J, Data given as average counts per F.o.V., with means ± s.d. Unpaired, two-tailed Student’s t-test. n = 3 independent experiments. K-M, Mean cell viability ± s.d. at different concentrations of gemcitabine (K), oxaliplatin (L) and SN38 (M) in CAPAN1 cells transduced with EV or cJUN-OE. IC50 values for each drug are indicated. n = 3 independent experiments.
Two FOXP3+CD4+ T cell subpopulations distinctly control the prognosis of colorectal cancers

Nat Med.

2016 May 25

Saito T, Nishikawa H, Wada H, Nagano Y, Sugiyama D, Atarashi K, Maeda Y, Hamaguchi M, Ohkura N, Sato E, Nagase H, Nishimura J, Yamamoto H, Takiguchi S, Tanoue T, Suda W, Morita H, Hattori M, Honda K, Mori M, Doki Y, Sakaguchi S.
PMID: 27111280 | DOI: 10.1038/nm.4086

CD4+ T cells that express the forkhead box P3 (FOXP3) transcription factor function as regulatory T (Treg) cells and hinder effective immune responses against cancer cells. Abundant Treg cell infiltration into tumors is associated with poor clinical outcomes in various types of cancers. However, the role of Treg cells is controversial in colorectal cancers (CRCs), in which FOXP3+ T cell infiltration indicated better prognosis in some studies. Here we show that CRCs, which are commonly infiltrated by suppression-competent FOXP3hi Treg cells, can be classified into two types by the degree of additional infiltration of FOXP3lo nonsuppressive T cells. The latter, which are distinguished from FOXP3+ Treg cells by non-expression of the naive T cell marker CD45RA and instability of FOXP3, secreted inflammatory cytokines. Indeed, CRCs with abundant infiltration of FOXP3lo T cells showed significantly better prognosis than those with predominantly FOXP3hi Treg cell infiltration. Development of such inflammatory FOXP3lonon-Treg cells may depend on secretion of interleukin (IL)-12 and transforming growth factor (TGF)-β by tissues and their presence was correlated with tumor invasion by intestinal bacteria, especially Fusobacterium nucleatum. Thus, functionally distinct subpopulations of tumor-infiltrating FOXP3+ T cells contribute in opposing ways to determining CRC prognosis. Depletion of FOXP3hi Treg cells from tumor tissues, which would augment antitumor immunity, could thus be used as an effective treatment strategy for CRCs and other cancers, whereas strategies that locally increase the population of FOXP3lo non-Treg cells could be used to suppress or prevent tumor formation.

Functional ex vivo assay to select Homologous Recombination deficient breast tumors for PARP inhibitor treatment

Clin Cancer Res. 2014 Jun 24

Naipal KA, Verkaik NS, Ameziane N, van Deurzen CH, Ter Brugge P, Meijers M, Sieuwerts AM, Martens J, O'Connor MJ, Vrieling H, Hoeijmakers JH, Jonkers J, Kanaar R, de Winter J, Vreeswijk M, Jager A, van Gent DC.
PMID: 24963051

Purpose: Poly(ADP-Ribose) Polymerase (PARP) inhibitors are promising targeted treatment options for hereditary breast tumors with a Homologous Recombination (HR) deficiency caused by BRCA1 or BRCA2 mutations. However, the functional consequence of BRCA gene mutations is not always known and tumors can be HR deficient for other reasons than BRCA gene mutations. Therefore, we aimed to develop a functional test to determine HR activity in tumor samples to facilitate selection of patients eligible for PARP inhibitor treatment. Experimental design: We obtained 54 fresh primary breast tumor samples from patients undergoing surgery. We determined their HR capacity by studying the formation of ionizing radiation induced foci (IRIF) of the HR protein RAD51 after ex vivo irradiation of these organotypic breast tumor samples. Tumors showing impaired RAD51 IRIF formation were subjected to genetic and epigenetic analysis. Results: Five out of 45 primary breast tumors with sufficient numbers of proliferating tumor cells were RAD51 IRIF formation deficient (11%, 95%CI: 5%-24%). This HR defect was significantly associated with Triple Negative Breast Cancer (OR:57, 95%CI: 3.9-825, p=0.003). Two out of five HR deficient tumors were not caused by mutations in the BRCA genes, but by BRCA1 promoter hypermethylation. Conclusion: The functional RAD51 IRIF assay faithfully identifies HR deficient tumors and has clear advantages over gene sequencing. It is a relatively easy assay that can be performed on biopsy material, making it a powerful tool to select patients with an HR-deficient cancer for PARP inhibitor treatment in the clinic.
Clinical significance of BRCA1 and BRCA2 mRNA and protein expression in patients with sporadic gastric cancer

Oncology Letters

2019 Mar 08

Kim H, Hwang I, Min H, Bang Y and Kim W
| DOI: 10.3892/ol.2019.10132

X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?