Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (4)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (32) Apply TBD filter
  • SARS-CoV-2 (11) Apply SARS-CoV-2 filter
  • Ifng (10) Apply Ifng filter
  • Lgr5 (8) Apply Lgr5 filter
  • Il-6 (8) Apply Il-6 filter
  • V-nCoV2019-S (7) Apply V-nCoV2019-S filter
  • COL1A1 (6) Apply COL1A1 filter
  • Ccl2 (6) Apply Ccl2 filter
  • IL1B (6) Apply IL1B filter
  • CD68 (5) Apply CD68 filter
  • IL12B (5) Apply IL12B filter
  • Tnf (5) Apply Tnf filter
  • GFAP (5) Apply GFAP filter
  • IL6 (5) Apply IL6 filter
  • LCN2 (5) Apply LCN2 filter
  • IL-10 (5) Apply IL-10 filter
  • SIV (5) Apply SIV filter
  • IL-1β (5) Apply IL-1β filter
  • CCR2 (4) Apply CCR2 filter
  • IL17A (4) Apply IL17A filter
  • C1qa (4) Apply C1qa filter
  • Il10 (4) Apply Il10 filter
  • CXCL10 (4) Apply CXCL10 filter
  • Foxp3 (4) Apply Foxp3 filter
  • IL13 (4) Apply IL13 filter
  • (-) Remove TLR4 filter TLR4 (4)
  • Cxcl1 (4) Apply Cxcl1 filter
  • Aif1 (4) Apply Aif1 filter
  • HIV (4) Apply HIV filter
  • NLRP3 (4) Apply NLRP3 filter
  • IL-8 (4) Apply IL-8 filter
  • Ackr2 (4) Apply Ackr2 filter
  • TNFA (4) Apply TNFA filter
  • CD3 (4) Apply CD3 filter
  • ACTA2 (3) Apply ACTA2 filter
  • Rbfox3 (3) Apply Rbfox3 filter
  • ARG1 (3) Apply ARG1 filter
  • Cd8a (3) Apply Cd8a filter
  • CD34 (3) Apply CD34 filter
  • CD4 (3) Apply CD4 filter
  • Wnt5a (3) Apply Wnt5a filter
  • IL18 (3) Apply IL18 filter
  • IL4 (3) Apply IL4 filter
  • PECAM1 (3) Apply PECAM1 filter
  • PDGFRB (3) Apply PDGFRB filter
  • Cd163 (3) Apply Cd163 filter
  • Apoe (3) Apply Apoe filter
  • Emr1 (3) Apply Emr1 filter
  • POSTN (3) Apply POSTN filter
  • Gpr55 (3) Apply Gpr55 filter

Product

  • BaseScope Duplex Assay (1) Apply BaseScope Duplex Assay filter
  • RNAscope 2.0 Assay (1) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Duplex (1) Apply RNAscope 2.5 HD Duplex filter

Research area

  • (-) Remove Inflammation filter Inflammation (4)
  • Eyes (1) Apply Eyes filter
  • Kidney (1) Apply Kidney filter
  • LncRNAs (1) Apply LncRNAs filter
  • Neovascularization (1) Apply Neovascularization filter

Category

  • Publications (4) Apply Publications filter
The long noncoding RNA Meg3 mediates TLR4-induced inflammation in experimental obstructive nephropathy

Clinical science (London, England : 1979)

2023 Jan 27

Yiu, WH;Lok, SW;Xue, R;Chen, J;Lai, KN;Lan, HY;Tang, SC;
PMID: 36705251 | DOI: 10.1042/CS20220537

Kidney inflammation contributes to the progression of chronic kidney disease (CKD). Modulation of Toll-like receptor 4 (TLR4) signaling is a potential therapeutic strategy for this pathology, but the regulatory mechanisms of TLR4 signaling in kidney tubular inflammation remains unclear. Here, we demonstrated that tubule-specific deletion of TLR4 in mice conferred protection against obstruction-induced kidney injury, with reduction in inflammatory cytokine production, macrophage infiltration and kidney fibrosis. Transcriptome analysis revealed a marked downregulation of long noncoding RNA (lncRNA) Meg3 in the obstructed kidney from tubule-specific TLR4 knockout mice compared to wild type control. Meg3 was also induced by LPS in tubular epithelial cells via a p53-dependent signaling pathway. Silencing of Meg3 suppressed LPS-induced cytokine production of CCL-2 and CXCL-2 and the activation of p38 MAPK pathway in vitro and ameliorated kidney fibrosis in mice with obstructive nephropathy. Together, these findings identify a proinflammatory role of lncRNA Meg3 in CKD and suggest a novel regulatory pathway in TLR4-driven inflammatory responses in tubular epithelial cells.
Systemic Lipopolysaccharide Exposure Exacerbates Choroidal Neovascularization in Mice

Ocular immunology and inflammation

2022 Nov 28

Tsioti, I;Steiner, BL;Escher, P;Zinkernagel, MS;Benz, PM;Kokona, D;
PMID: 36441988 | DOI: 10.1080/09273948.2022.2147547

This study aims to investigate the effect of a systemic lipopolysaccharide (LPS) stimulus in the course of laser-induced choroidal neovascularization (CNV) in C57BL/6 J mice. A group of CNV-subjected mice received 1 mg/kg LPS via the tail vein immediately after CNV induction. Mouse eyes were monitored in vivo with fluorescein angiography for 2 weeks. In situ hybridization and flow cytometry were performed in the retina at different time points. LPS led to increased fluorescein leakage 3 days after CNV, correlated with a large influx of monocyte-derived macrophages and increase of pro-inflammatory microglia/macrophages in the retina. Additionally, LPS enhanced Vegfα mRNA expression by Glul-expressing cells but not Aif1 positive microglia/macrophages in the laser lesion. These findings suggest that systemic LPS exposure has transient detrimental effects in the course of CNV through activation of microglia/macrophages to a pro-inflammatory phenotype and supports the important role of these cells in the CNV course.
Localization of Toll-like Receptor (TLR) 2 and TLR4 mRNA in the Colorectal Mucosa of Miniature Dachshunds with Inflammatory Colorectal Polyps.

J Comp Pathol.

2017 Jan 12

Yokoyama N, Ohta H, Yamazaki J, Kagawa Y, Ichii O, Khoirun N, Morita T, Osuga T, Lim SY, Sasaki N, Morishita K, Nakamura K, Takiguchi M.
PMID: 28089357 | DOI: 10.1016/j.jcpa.2016.10.010

Inflammatory colorectal polyps (ICRPs) are characterized by the formation of multiple or solitary polyps with marked neutrophil infiltration in the colorectal area, and are speculated to be a novel form of breed-specific canine idiopathic inflammatory bowel disease (IBD). In human IBD, toll-like receptor (TLR) 2 and TLR4 have been reported to be involved in the pathogenesis of the disease. The aim of this study was to evaluate the expression of TLR2 and TLR4 mRNA in the colorectal mucosa of dogs with ICRPs by in-situ hybridization using an RNAscope assay. Samples of inflamed colorectal mucosa (n = 5) and non-inflamed mucosa (n = 5) from miniature dachshunds (MDs) with ICRPs and colonic mucosa from healthy beagles (n = 5) were examined. TLR2 and TLR4 hybridization signals were localized to the colorectal epithelium, inflammatory cells and fibroblasts in the inflamed colorectal mucosa of affected dogs. The signals were significantly greater in inflamed colorectal epithelium compared with non-inflamed epithelium of MDs with ICRPs and healthy beagles (P <0.05). These results suggest that increased expression of TLR2 and TLR4 mRNA in the inflamed colorectal mucosa results from not only inflammatory cell infiltration, but also the upregulation of TLR2 and TLR4 mRNA in the colonic epithelium.

Relevance of TNBS-Colitis in Rats: A Methodological Study with Endoscopic, Historical and Transcripttomic Characterization and Correlation to IBD.

PLoS One, 8(1), e54543.

Brenna Ø, Furnes MW, Drozdov I, van Beelen Granlund A, Flatberg A, Sandvik AK, Zwiggelaar RT, Mårvik R, Nordrum IS, Kidd M, Gustafsson BI (2013).
PMID: 23382912 | DOI: 10.1371/journal.pone.0054543.

BACKGROUND: Rectal instillation of trinitrobenzene sulphonic acid (TNBS) in ethanol is an established model for inflammatory bowel disease (IBD). We aimed to 1) set up a TNBS-colitis protocol resulting in an endoscopic and histologic picture resembling IBD, 2) study the correlation between endoscopic, histologic and gene expression alterations at different time points after colitis induction, and 3) compare rat and human IBD mucosal transcriptomic data to evaluate whether TNBS-colitis is an appropriate model of IBD. METHODOLOGY/PRINCIPAL FINDINGS: Five female Sprague Daley rats received TNBS diluted in 50% ethanol (18 mg/0.6 ml) rectally. The rats underwent colonoscopy with biopsy at different time points. RNA was extracted from rat biopsies and microarray was performed. PCR and in situ hybridization (ISH) were done for validation of microarray results. Rat microarray profiles were compared to human IBD expression profiles (25 ulcerative colitis Endoscopic score demonstrated mild to moderate colitis after three and seven days, but declined after twelve days. Histologic changes corresponded with the endoscopic appearance. Over-represented Gene Ontology Biological Processes included: Cell Adhesion, Immune Response, Lipid Metabolic Process, and Tissue Regeneration. IL-1α, IL-1β, TLR2, TLR4, PRNP were all significantly up-regulated, while PPARγ was significantly down-regulated. Among genes with highest fold change (FC) were SPINK4, LBP, ADA, RETNLB and IL-1α. The highest concordance in differential expression between TNBS and IBD transcriptomes was three days after colitis induction. ISH and PCR results corresponded with the microarray data. The most concordantly expressed biologically relevant pathways included TNF signaling, Cell junction organization, and Interleukin-1 processing. CONCLUSIONS/SIGNIFICANCE: Endoscopy with biopsies in TNBS-colitis is useful to follow temporal changes of inflammation visually and histologically, and to acquire tissue for gene expression analyses. TNBS-colitis is an appropriate model to study specific biological processes in IBD.
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?