Osorio, MJ;Mariani, JN;Zou, L;Schanz, SJ;Heffernan, K;Cornwell, A;Goldman, SA;
PMID: 36334067 | DOI: 10.1002/glia.24291
Genomic analyses have revealed heterogeneity among glial progenitor cells (GPCs), but the compartment selectivity of human GPCs (hGPCs) is unclear. Here, we asked if GPCs of human grey and white brain matter are distinct in their architecture and associated gene expression. RNA profiling of NG2-defined hGPCs derived from adult human neocortex and white matter differed in their expression of genes involved in Wnt, NOTCH, BMP and TGFβ signaling, suggesting compartment-selective biases in fate and self-renewal. White matter hGPCs over-expressed the BMP antagonists BAMBI and CHRDL1, suggesting their tonic suppression of astrocytic fate relative to cortical hGPCs, whose relative enrichment of cytoskeletal genes presaged their greater morphological complexity. In human glial chimeric mice, cortical hGPCs assumed larger and more complex morphologies than white matter hGPCs, and both were more complex than their mouse counterparts. These findings suggest that human grey and white matter GPCs comprise context-specific pools with distinct functional biases.
Minatoguchi, S;Saito, S;Furuhashi, K;Sawa, Y;Okazaki, M;Shimamura, Y;Kaihan, AB;Hashimoto, Y;Yasuda, Y;Hara, A;Mizutani, Y;Ando, R;Kato, N;Ishimoto, T;Tsuboi, N;Esaki, N;Matsuyama, M;Shiraki, Y;Kobayashi, H;Asai, N;Enomoto, A;Maruyama, S;
PMID: 35354870 | DOI: 10.1038/s41598-022-09331-5
Perivascular mesenchymal cells (PMCs), which include pericytes, give rise to myofibroblasts that contribute to chronic kidney disease progression. Several PMC markers have been identified; however, PMC heterogeneity and functions are not fully understood. Here, we describe a novel subset of renal PMCs that express Meflin, a glycosylphosphatidylinositol-anchored protein that was recently identified as a marker of fibroblasts essential for cardiac tissue repair. Tracing the lineage of Meflin+ PMCs, which are found in perivascular and periglomerular areas and exhibit renin-producing potential, showed that they detach from the vasculature and proliferate under disease conditions. Although the contribution of Meflin+ PMCs to conventional α-SMA+ myofibroblasts is low, they give rise to fibroblasts with heterogeneous α-SMA expression patterns. Genetic ablation of Meflin+ PMCs in a renal fibrosis mouse model revealed their essential role in collagen production. Consistent with this, human biopsy samples showed that progressive renal diseases exhibit high Meflin expression. Furthermore, Meflin overexpression in kidney fibroblasts promoted bone morphogenetic protein 7 signals and suppressed myofibroblastic differentiation, implicating the roles of Meflin in suppressing tissue fibrosis. These findings demonstrate that Meflin marks a PMC subset that is functionally distinct from classic pericytes and myofibroblasts, highlighting the importance of elucidating PMC heterogeneity.
Fluri F, Malzahn U, Homola GA, Schuhmann MK, Kleinschnitz C, Volkmann J.
PMID: 29059697 | DOI: 10.1002/ana.25086
Abstract
OBJECTIVE:
One-third of all stroke survivors are unable to walk, even after intensive physiotherapy. Thus, other concepts to restore walking are needed. Since electrical stimulation of the mesencephalic locomotor region (MLR) is known to elicit gait movements, this area might be a promising target for restorative neurostimulation in stroke patients with gait disability. The present study aims to delineate the effect of high-frequency stimulation of the MLR (MLR-HFS) on gait impairment in a rodent stroke model.
METHODS:
Male Wistar rats underwent photothrombotic stroke of the right sensorimotor cortex and chronic implantation of a stimulating electrode into the right MLR. Gait was assessed using clinical scoring of the beam walking test and videokinematic analysis (CatWalk™) at baseline and on days 3 and 4 after experimental stroke with and without MLR-HFS.
RESULTS:
Kinematic analysis revealed significant changes in several dynamic and static gait parameters resulting in overall reduced gait velocity. All rats exhibited major coordination deficits during the beam walking challenge and were unable to cross the beam. Simultaneous to the onset of MLR-HFS, a significantly higher walking speed and improvements in several dynamic gait parameters were detected by the Catwalk™-system. Rats regained the ability to cross the beam unassisted showing a reduced number of paw slips and misses.
INTERPRETATION:
MLR-HFS can improve disordered locomotor function in a rodent stroke model. It may act by shielding brainstem and spinal locomotor centers from abnormal cortical input after stroke, thus allowing for compensatory and independent action of these circuits.
AAV9-mediated FIG4 delivery prolongs life span in Charcot Marie Tooth disease type 4J mouse model
The Journal of clinical investigation
Presa, M;Bailey, RM;Davis, C;Murphy, T;Cook, J;Walls, R;Wilpan, H;Bogdanik, L;Lenk, GM;Burgess, RW;Gray, SJ;Lutz, C;
PMID: 33878035 | DOI: 10.1172/JCI137159
Charcot-Marie-Tooth disease type 4J (CMT4J) is caused by recessive, loss-of-function mutations in FIG4, encoding a phosphoinositol(3,5)P2-phosphatase. CMT4J patients have both neuron loss and demyelination in the peripheral nervous system, with vacuolization indicative of endosome/lysosome trafficking defects. Although the disease is highly variable, the onset is often in childhood and FIG4 mutations can dramatically shorten lifespan. There is currently no treatment for CMT4J. Here we present the results of preclinical studies testing a gene therapy approach to restore FIG4 expression. A mouse model of CMT4J, the Fig4-pale tremor (plt) allele, was dosed with a single-stranded AAV9 to deliver a codon-optimized human FIG4 sequence. Untreated, Fig4plt/plt mice have a median survival of approximately 5 weeks. When treated with the AAV9-FIG4 vector at postnatal day 1 or 4, mice survived at least one year, with largely normal gross motor performance and little sign of neuropathy by neurophysiological or histopathological evaluation. When treated at postnatal day 7 or 11, life span was still significantly prolonged and peripheral nerve function was improved, but rescue was less complete. No unanticipated adverse effects were observed. Therefore, AAV9-mediated delivery of FIG4 is a well-tolerated and efficacious strategy in a mouse model of CMT4J.
Vieira, JR;Shah, B;Dupraz, S;Paredes, I;Himmels, P;Schermann, G;Adler, H;Motta, A;Gärtner, L;Navarro-Aragall, A;Ioannou, E;Dyukova, E;Bonnavion, R;Fischer, A;Bonanomi, D;Bradke, F;Ruhrberg, C;Ruiz de Almodóvar, C;
PMID: 36549270 | DOI: 10.1016/j.neuron.2022.12.005
How the vascular and neural compartment cooperate to achieve such a complex and highly specialized structure as the central nervous system is still unclear. Here, we reveal a crosstalk between motor neurons (MNs) and endothelial cells (ECs), necessary for the coordinated development of MNs. By analyzing cell-to-cell interaction profiles of the mouse developing spinal cord, we uncovered semaphorin 3C (Sema3C) and PlexinD1 as a communication axis between MNs and ECs. Using cell-specific knockout mice and in vitro assays, we demonstrate that removal of Sema3C in MNs, or its receptor PlexinD1 in ECs, results in premature and aberrant vascularization of MN columns. Those vascular defects impair MN axon exit from the spinal cord. Impaired PlexinD1 signaling in ECs also causes MN maturation defects at later stages. This study highlights the importance of a timely and spatially controlled communication between MNs and ECs for proper spinal cord development.
Ali Marandi Ghoddousi, R;Magalong, VM;Kamitakahara, AK;Levitt, P;
PMID: 36313803 | DOI: 10.1016/j.crmeth.2022.100316
Spatial gene expression, achieved classically through in situ hybridization, is a fundamental tool for topographic phenotyping of cell types in the nervous system. Newly developed techniques allow for visualization of multiple mRNAs at single-cell resolution and greatly expand the ability to link gene expression to tissue topography, yet there are challenges in efficient quantification and analysis of these high-dimensional datasets. We have therefore developed the single-cell automated multiplex pipeline for RNA (SCAMPR), facilitating rapid and accurate segmentation of neuronal cell bodies using a dual immunohistochemistry-RNAscope protocol and quantification of low- and high-abundance mRNA signals using open-source image processing and automated segmentation tools. Proof of principle using SCAMPR focused on spatial mapping of gene expression by peripheral (vagal nodose) and central (visual cortex) neurons. The analytical effectiveness of SCAMPR is demonstrated by identifying the impact of early life stress on gene expression in vagal neuron subtypes.
Gao, F;Li, C;Danopoulos, S;Al Alam, D;Peinado, N;Webster, S;Borok, Z;Kohbodi, GA;Bellusci, S;Minoo, P;
PMID: 35385750 | DOI: 10.1016/j.celrep.2022.110608
The lung alveolus is lined with alveolar type 1 (AT1) and type 2 (AT2) epithelial cells. During alveologenesis, increasing demand associated with expanding alveolar numbers is met by proliferating progenitor AT2s (pAT2). Little information exists regarding the identity of this population and their niche microenvironment. We show that during alveologenesis, Hedgehog-responsive PDGFRa(+) progenitors (also known as SCMFs) are a source of secreted trophic molecules that maintain a unique pAT2 population. SCMFs are in turn maintained by TGFβ signaling. Compound inactivation of Alk5 TβR2 in SCMFs reduced their numbers and depleted the pAT2 pool without impacting differentiation of daughter cells. In lungs of preterm infants who died with bronchopulmonary dysplasia, PDGFRa is reduced and the number of proliferative AT2s is diminished, indicating that an evolutionarily conserved mechanism governs pAT2 behavior during alveologenesis. SCMFs are a transient cell population, active only during alveologenesis, making them a unique stage-specific niche mesodermal cell type in mammalian organs.
Figeac, F;Tencerova, M;Ali, D;Andersen, T;Appadoo, D;Kerckhofs, G;Ditzel, N;Kowal, J;Rauch, A;Kassem, M;
| DOI: 10.1093/stmcls/sxab011
The mechanisms of obesity and type 2 diabetes (T2D)-associated impaired fracture healing are poorly studied. In a murine model of T2D reflecting both hyperinsulinemia induced by high fat diet (HFD) and insulinopenia induced by treatment with streptozotocin (STZ), we examined bone healing in a tibia cortical bone defect. A delayed bone healing was observed during hyperinsulinemia as newly formed bone was reduced by - 28.4±7.7% and was associated with accumulation of marrow adipocytes at the defect site +124.06±38.71%, and increased density of SCA1+ (+74.99± 29.19%) but not Runx2 +osteoprogenitor cells. We also observed increased in reactive oxygen species production (+101.82± 33.05%), senescence gene signature (≈106.66± 34.03%) and LAMIN B1 - senescent cell density (+225.18± 43.15%), suggesting accelerated senescence phenotype. During insulinopenia, a more pronounced delayed bone healing was observed with decreased newly formed bone to -34.9± 6.2% which was inversely correlated with glucose levels (R 2=0.48, p<0.004) and callus adipose tissue area (R 2=0.3711, p<0.01). Finally, to investigate the relevance to human physiology, we observed that sera from obese and T2D subjects had disease state-specific inhibitory effects on osteoblast related gene signatures in human bone marrow stromal cells which resulted in inhibition of osteoblast and enhanced adipocyte differentiation. Our data demonstrate that T2D exerts negative effects on bone healing through inhibition of osteoblast differentiation of skeletal stem cells and induction of accelerated bone senescence and that the hyperglycaemia per se and not just insulin levels is detrimental for bone healing.
Arterioscler Thromb Vasc Biol.
Chowdhury TA, Koceja C, Eisa-Beygi S, Kleinstiver BP, Kumar SN, Lin CW, Li K, Prabhudesai S, Joung JK, Ramchandran R.
PMID: 29724820 | DOI: 10.1161/ATVBAHA.118.310848
Abstract
OBJECTIVE:
Tie1 (tyrosine kinase containing immunoglobulin and epidermal growth factor homology 1), an endothelial and hematopoietic cell-specific receptor tyrosine kinase, is an important regulator of angiogenesis and critical for maintaining vascular integrity. The post-transcriptional regulation of tie1 mRNA expression is not understood, but it might partly explain Tie1's differential expression pattern in endothelium. Following up on our previous work that identified natural antisense transcripts from the tie1 locus-tie1 antisense (tie1AS), which regulates tie1 mRNA levels in zebrafish-we attempted to identify the mechanism of this regulation.
APPROACH AND RESULTS:
Through in vitro and in vivo ribonucleoprotein binding studies, we demonstrated that tie1AS long noncoding RNA interacts with an RNA binding protein-embryonic lethal and abnormal vision Drosophila-like 1 (Elavl1)-that regulates tie1 mRNA levels. When we disrupted the interaction between tie1AS and Elavl1 by using constitutively active antisense morpholino oligonucleotides or photoactivatable morpholino oligonucleotides, tie1 mRNA levels increased between 26 and 31 hours post-fertilization, particularly in the head. This increase correlated with dilation of primordial midbrain channels, smaller eyes, and reduced ventricular space. We also observed these phenotypes when we used CRISPR (clustered regularly interspaced short palindromic repeats)-mediated CRISPRi (CRISPR-mediated interference) to knock down tie1AS. Treatment of the morpholino oligonucleotide-injected embryos with a small molecule that decreased tie1mRNA levels rescued all 3 abnormal phenotypes.
CONCLUSIONS:
We identified a novel mode of temporal and spatial post-transcriptional regulation of tie1 mRNA. It involves long noncoding RNA, tie1AS, and Elavl1 (an interactor of tie1AS).
Kathe, C;Skinnider, MA;Hutson, TH;Regazzi, N;Gautier, M;Demesmaeker, R;Komi, S;Ceto, S;James, ND;Cho, N;Baud, L;Galan, K;Matson, KJE;Rowald, A;Kim, K;Wang, R;Minassian, K;Prior, JO;Asboth, L;Barraud, Q;Lacour, SP;Levine, AJ;Wagner, F;Bloch, J;Squair, JW;Courtine, G;
PMID: 36352232 | DOI: 10.1038/s41586-022-05385-7
A spinal cord injury interrupts pathways from the brain and brainstem that project to the lumbar spinal cord, leading to paralysis. Here we show that spatiotemporal epidural electrical stimulation (EES) of the lumbar spinal cord<sup>1-3</sup> applied during neurorehabilitation<sup>4,5</sup> (EES<sup>REHAB</sup>) restored walking in nine individuals with chronic spinal cord injury. This recovery involved a reduction in neuronal activity in the lumbar spinal cord of humans during walking. We hypothesized that this unexpected reduction reflects activity-dependent selection of specific neuronal subpopulations that become essential for a patient to walk after spinal cord injury. To identify these putative neurons, we modelled the technological and therapeutic features underlying EES<sup>REHAB</sup> in mice. We applied single-nucleus RNA sequencing<sup>6-9</sup> and spatial transcriptomics<sup>10,11</sup> to the spinal cords of these mice to chart a spatially resolved molecular atlas of recovery from paralysis. We then employed cell type<sup>12,13</sup> and spatial prioritization to identify the neurons involved in the recovery of walking. A single population of excitatory interneurons nested within intermediate laminae emerged. Although these neurons are not required for walking before spinal cord injury, we demonstrate that they are essential for the recovery of walking with EES following spinal cord injury. Augmenting the activity of these neurons phenocopied the recovery of walking enabled by EES<sup>REHAB</sup>, whereas ablating them prevented the recovery of walking that occurs spontaneously after moderate spinal cord injury. We thus identified a recovery-organizing neuronal subpopulation that is necessary and sufficient to regain walking after paralysis. Moreover, our methodology establishes a framework for using molecular cartography to identify the neurons that produce complex behaviours.
Acta neuropathologica communications
Seeker, LA;Bestard-Cuche, N;Jäkel, S;Kazakou, NL;Bøstrand, SMK;Wagstaff, LJ;Cholewa-Waclaw, J;Kilpatrick, AM;Van Bruggen, D;Kabbe, M;Baldivia Pohl, F;Moslehi, Z;Henderson, NC;Vallejos, CA;La Manno, G;Castelo-Branco, G;Williams, A;
PMID: 37217978 | DOI: 10.1186/s40478-023-01568-z
The myelinated white matter tracts of the central nervous system (CNS) are essential for fast transmission of electrical impulses and are often differentially affected in human neurodegenerative diseases across CNS region, age and sex. We hypothesize that this selective vulnerability is underpinned by physiological variation in white matter glia. Using single nucleus RNA sequencing of human post-mortem white matter samples from the brain, cerebellum and spinal cord and subsequent tissue-based validation we found substantial glial heterogeneity with tissue region: we identified region-specific oligodendrocyte precursor cells (OPCs) that retain developmental origin markers into adulthood, distinguishing them from mouse OPCs. Region-specific OPCs give rise to similar oligodendrocyte populations, however spinal cord oligodendrocytes exhibit markers such as SKAP2 which are associated with increased myelin production and we found a spinal cord selective population particularly equipped for producing long and thick myelin sheaths based on the expression of genes/proteins such as HCN2. Spinal cord microglia exhibit a more activated phenotype compared to brain microglia, suggesting that the spinal cord is a more pro-inflammatory environment, a difference that intensifies with age. Astrocyte gene expression correlates strongly with CNS region, however, astrocytes do not show a more activated state with region or age. Across all glia, sex differences are subtle but the consistent increased expression of protein-folding genes in male donors hints at pathways that may contribute to sex differences in disease susceptibility. These findings are essential to consider for understanding selective CNS pathologies and developing tailored therapeutic strategies.
Carr MJ, Toma JS, Johnston APW, Steadman PE, Yuzwa SA, Mahmud N, Frankland PW, Kaplan DR, Miller FD.
PMID: - | DOI: 10.1016/j.stem.2018.10.024
Peripheral innervation plays an important role in regulating tissue repair and regeneration. Here we provide evidence that injured peripheral nerves provide a reservoir of mesenchymalprecursor cells that can directly contribute to murine digit tip regeneration and skin repair. In particular, using single-cell RNA sequencing and lineage tracing, we identify transcriptionally distinct mesenchymal cell populations within the control and injured adult nerve, including neural crest-derived cells in the endoneurium with characteristics of mesenchymal precursor cells. Culture and transplantation studies show that these nerve-derived mesenchymal cells have the potential to differentiate into non-nerve lineages. Moreover, following digit tip amputation, neural crest-derived nerve mesenchymal cells contribute to the regenerative blastema and, ultimately, to the regenerated bone. Similarly, neural crest-derived nerve mesenchymal cells contribute to the dermis during skin wound healing. These findings support a model where peripheral nerves directly contribute mesenchymal precursor cells to promote repair and regeneration of injured mammalian tissues.