Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (13)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (137) Apply TBD filter
  • Gad1 (85) Apply Gad1 filter
  • vGlut2 (75) Apply vGlut2 filter
  • Slc17a6 (72) Apply Slc17a6 filter
  • SLC32A1 (70) Apply SLC32A1 filter
  • FOS (62) Apply FOS filter
  • Sst (57) Apply Sst filter
  • VGAT (56) Apply VGAT filter
  • TH (55) Apply TH filter
  • Gad2 (50) Apply Gad2 filter
  • DRD2 (49) Apply DRD2 filter
  • Slc17a7 (49) Apply Slc17a7 filter
  • PVALB (46) Apply PVALB filter
  • tdTomato (44) Apply tdTomato filter
  • DRD1 (36) Apply DRD1 filter
  • GFAP (33) Apply GFAP filter
  • Chat (33) Apply Chat filter
  • Crh (32) Apply Crh filter
  • egfp (31) Apply egfp filter
  • Npy (28) Apply Npy filter
  • Pomc (25) Apply Pomc filter
  • VGluT1 (25) Apply VGluT1 filter
  • Cre (24) Apply Cre filter
  • Penk (23) Apply Penk filter
  • AGRP (22) Apply AGRP filter
  • Rbfox3 (21) Apply Rbfox3 filter
  • CCK (21) Apply CCK filter
  • Oxtr (21) Apply Oxtr filter
  • OPRM1 (21) Apply OPRM1 filter
  • TAC1 (20) Apply TAC1 filter
  • Pdyn (20) Apply Pdyn filter
  • C-fos (20) Apply C-fos filter
  • GLP1R (19) Apply GLP1R filter
  • Aldh1l1 (18) Apply Aldh1l1 filter
  • GFP (18) Apply GFP filter
  • Vip (18) Apply Vip filter
  • Nts (17) Apply Nts filter
  • Prkcd (15) Apply Prkcd filter
  • Trpv1 (15) Apply Trpv1 filter
  • CALCA (14) Apply CALCA filter
  • Drd1a (14) Apply Drd1a filter
  • Bdnf (14) Apply Bdnf filter
  • MBP (14) Apply MBP filter
  • Tmem119 (14) Apply Tmem119 filter
  • Piezo2 (13) Apply Piezo2 filter
  • SOX2 (13) Apply SOX2 filter
  • Gal (13) Apply Gal filter
  • ESR1 (13) Apply ESR1 filter
  • PDGFRA (13) Apply PDGFRA filter
  • Aif1 (13) Apply Aif1 filter

Product

  • RNAscope Multiplex Fluorescent Assay (7) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope Fluorescent Multiplex Assay (4) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope 2.5 LS Assay (1) Apply RNAscope 2.5 LS Assay filter

Research area

  • (-) Remove Neuroscience filter Neuroscience (13)
  • Cancer (1) Apply Cancer filter
  • Cell Biology (1) Apply Cell Biology filter
  • Covid (1) Apply Covid filter
  • Inflammation (1) Apply Inflammation filter

Category

  • Publications (13) Apply Publications filter
Alzheimer's disease phospholipase C-gamma-2 (PLCG2) protective variant is a functional hypermorph.

Alzheimers Res Ther.

2019 Feb 02

Magno L, Lessard CB, Martins M, Lang V, Cruz P, Asi Y, Katan M, Bilsland J, Lashley T, Chakrabarty P, Golde TE, Whiting PJ.
PMID: 30711010 | DOI: 10.1186/s13195-019-0469-0

Abstract

BACKGROUND:

Recent Genome Wide Association Studies (GWAS) have identified novel rare coding variants in immune genes associated with late onset Alzheimer's disease (LOAD). Amongst these, a polymorphism in phospholipase C-gamma 2 (PLCG2) P522R has been reported to be protective against LOAD. PLC enzymes are key elements in signal transmission networks and are potentially druggable targets. PLCG2 is highly expressed in the hematopoietic system. Hypermorphic mutations in PLCG2 in humans have been reported to cause autoinflammation and immune disorders, suggesting a key role for this enzyme in the regulation of immune cell function.

METHODS:

We assessed PLCG2 distribution in human and mouse brain tissue via immunohistochemistry and in situ hybridization. We transfected heterologous cell systems (COS7 and HEK293T cells) to determine the effect of the P522R AD-associated variant on enzymatic function using various orthogonal assays, including a radioactive assay, IP-One ELISA, and calcium assays.

RESULTS:

PLCG2 expression is restricted primarily to microglia and granule cells of the dentate gyrus. Plcg2 mRNA is maintained in plaque-associated microglia in the cerebral tissue of an AD mouse model. Functional analysis of the p.P522R variant demonstrated a small hypermorphic effect of the mutation on enzyme function.

CONCLUSIONS:

The PLCG2 P522R variant is protective against AD. We show that PLCG2 is expressed in brain microglia, and the p.P522R polymorphism weakly increases enzyme function. These data suggest that activation of PLCγ2 and not inhibition could be therapeutically beneficial in AD. PLCγ2 is therefore a potential target for modulating microglia function in AD, and a small molecule drug that weakly activates PLCγ2 may be one potential therapeutic approach.

Single-cell RNA sequencing reveals time- and sex-specific responses of mouse spinal cord microglia to peripheral nerve injury and links ApoE to chronic pain

Nature communications

2022 Feb 11

Tansley, S;Uttam, S;Ureña Guzmán, A;Yaqubi, M;Pacis, A;Parisien, M;Deamond, H;Wong, C;Rabau, O;Brown, N;Haglund, L;Ouellet, J;Santaguida, C;Ribeiro-da-Silva, A;Tahmasebi, S;Prager-Khoutorsky, M;Ragoussis, J;Zhang, J;Salter, MW;Diatchenko, L;Healy, LM;Mogil, JS;Khoutorsky, A;
PMID: 35149686 | DOI: 10.1038/s41467-022-28473-8

Activation of microglia in the spinal cord following peripheral nerve injury is critical for the development of long-lasting pain hypersensitivity. However, it remains unclear whether distinct microglia subpopulations or states contribute to different stages of pain development and maintenance. Using single-cell RNA-sequencing, we show that peripheral nerve injury induces the generation of a male-specific inflammatory microglia subtype, and demonstrate increased proliferation of microglia in male as compared to female mice. We also show time- and sex-specific transcriptional changes in different microglial subpopulations following peripheral nerve injury. Apolipoprotein E (Apoe) is the top upregulated gene in spinal cord microglia at chronic time points after peripheral nerve injury in mice. Furthermore, polymorphisms in the APOE gene in humans are associated with chronic pain. Single-cell RNA sequencing analysis of human spinal cord microglia reveals a subpopulation with a disease-related transcriptional signature. Our data provide a detailed analysis of transcriptional states of mouse and human spinal cord microglia, and identify a link between ApoE and chronic pain in humans.
Measurement of plasma cell-free mitochondrial tumor DNA improves detection of glioblastoma in patient-derived orthotopic xenograft models.

Cancer Res.

2018 Nov 02

Mair R, Mouliere F, Smith CG, Chandrananda D, Gale D, Marass F, Tsui DWY, Massie CE, Wright AJ, Watts C, Rosenfeld N, Brindle KM.
PMID: 30389699 | DOI: 10.1158/0008-5472.CAN-18-0074

The factors responsible for the low detection rate of cell-free tumor DNA (ctDNA) in the plasma of glioblastoma (GB) patients are currently unknown. In this study, we measured circulating nucleic acids in patient-derived orthotopically implanted xenograft (PDOX) models of GB (n=64) and show that tumor size and cell proliferation, but not the integrity of the blood-brain barrier or cell death, affect the release of ctDNA in treatment naïve GB PDOX. Analysis of fragment length profiles by shallow genome-wide sequencing (<0.2x coverage) of host (rat) and tumor (human) circulating DNA identified a peak at 145 bp in the human DNA fragments, indicating a difference in the origin or processing of the ctDNA. The concentration of ctDNA correlated with cell death only after treatment with Temozolomide and radiotherapy. Digital PCR detection of plasma tumor mitochondrial DNA (tmtDNA), an alternative to detection of nuclear ctDNA, improved plasma DNA detection rate (82% versus 24%) and allowed detection in cerebrospinal fluid (CSF) and urine. Mitochondrial mutations are prevalent across all cancers and can be detected with high sensitivity, at low cost and without prior knowledge of tumor mutations via capture-panel sequencing. Coupled with the observation that mitochondrial copy number increases in glioma, these data suggest analyzing tmtDNA as a more sensitive method to detect and monitor tumor burden in cancer, specifically in GB where current methods have largely failed.

CCR2 monocytes repair cerebrovascular damage caused by chronic social defeat stress

Brain, behavior, and immunity

2022 Jan 18

Lehmann, ML;Samuels, JD;Kigar, SL;Poffenberger, CN;Lotstein, ML;Herkenham, M;
PMID: 35063606 | DOI: 10.1016/j.bbi.2022.01.011

Immune surveillance of the brain plays an important role in health and disease. Peripheral leukocytes patrol blood-brain barrier interfaces, and after injury, monocytes cross the cerebrovasculature and follow a pattern of pro- and anti-inflammatory activity leading to tissue repair. We have shown that chronic social defeat (CSD) causes scattered vasculature disruptions. Here, we assessed CCR2+ monocyte trafficking to the vascular injury sites in Ccr2wt/rfp reporter mice both during CSD and one week following CSD cessation. We found that CSD for 14 days induced microhemorrhages where plasma fibrinogen leaked into perivascular spaces, but it did not affect the distribution or density of CCR2rfp+ monocytes in the brain. However, after recovery from CSD, many vascularly adhered CCR2+ cells were detected, and gene expression of the CCR2 chemokine receptor ligands CCL7 and CCL12, but not CCL2, was elevated in endothelial cells. Adhered CCR2+ cells were mostly the non-classical, anti-inflammatory Ly6Clo type, and they phagocytosed fibrinogen in perivascular spaces. In CCR2-deficient Ccr2rfp/rfp mice, fibrinogen levels remained elevated in recovery. Fibrinogen infused intracerebroventricularly induced CCR2+ cells to adhere to the vasculature and phagocytose perivascular fibrinogen in Ccr2wt/rfp but not Ccr2rfp/rfp mice. Depletion of monocytes with clodronate liposomes during CSD recovery prevented fibrinogen clearance and blocked behavioral recovery. We hypothesize that peripheral CCR2+ monocytes are not elevated in the brain on day 14 at the end of CSD and do not contribute to its behavioral effects at that time, but in recovery following cessation of stress, they enter the brain and exert restorative functions mediating vascular repair and normalization of behavior.
Connexin 30 is expressed in a subtype of mouse brain pericytes.

Brain Struct Funct.

2017 Nov 16

Mazaré N, Gilbert A, Boulay AC, Rouach N, Cohen-Salmon M.
PMID: 29143947 | DOI: 10.1007/s00429-017-1562-4

Pericytes are mural cells of blood microvessels which play a crucial role at the neurovascular interface of the central nervous system. They are involved in the regulation of blood-brain barrier integrity, angiogenesis, clearance of toxic metabolites, capillary hemodynamic responses, and neuroinflammation, and they demonstrate stem cell activity. Morphological and molecular studies to characterize brain pericytes recently pointed out some heterogeneity in pericyte population. Nevertheless, a clear definition of pericyte subtypes is still lacking. Here, we demonstrate that a fraction of brain pericytes express Connexin 30 (Cx30), a gap junction protein, which, in the brain parenchyma, was thought to be exclusively found in astrocytes. Cx30 could thus be a candidate protein in the composition of the gap junction channels already described between endothelial cells and pericytes. It could also form hemichannels or acts in a channel-independent manner to regulate pericyte morphology, as already observed in astrocytes. Altogether, our results suggest that Cx30 defines a novel brain pericyte subtype.

Single-cell analysis of experience-dependent transcriptomic states in the mouse visual cortex

Nat Neurosci.

2017 Dec 11

Hrvatin S, Hochbaum DR, Nagy MA, Cicconet M, Robertson K, Cheadle L, Zilionis R, Ratner A, Borges-Monroy R, Klein AM, Sabatini BL, Greenberg ME.
PMID: 29230054 | DOI: 10.1038/s41593-017-0029-5

Activity-dependent transcriptional responses shape cortical function. However, a comprehensive understanding of the diversity of these responses across the full range of cortical cell types, and how these changes contribute to neuronal plasticity and disease, is lacking. To investigate the breadth of transcriptional changes that occur across cell types in the mouse visual cortex after exposure to light, we applied high-throughput single-cell RNA sequencing. We identified significant and divergent transcriptional responses to stimulation in each of the 30 cell types characterized, thus revealing 611 stimulus-responsive genes. Excitatory pyramidal neurons exhibited inter- and intralaminar heterogeneity in the induction of stimulus-responsive genes. Non-neuronal cells showed clear transcriptional responses that may regulate experience-dependent changes in neurovascular coupling and myelination. Together, these results reveal the dynamic landscape of the stimulus-dependent transcriptional changes occurring across cell types in the visual cortex; these changes are probably critical for cortical function and may be sites of deregulation in developmental brain disorders.

Hyperactivity with Disrupted Attention by Activation of an Astrocyte Synaptogenic Cue.

Cell

2019 Apr 19

Nagai J, Rajbhandari AK, Gangwani MR, Hachisuka A, Coppola G, Masmanidis SC, Fanselow MS, Khakh BS.
PMID: 31031006 | DOI: 10.1016/j.cell.2019.03.019

Hyperactivity and disturbances of attention are common behavioral disorders whose underlying cellular and neural circuit causes are not understood. We report the discovery that striatal astrocytes drive such phenotypes through a hitherto unknown synaptic mechanism. We found that striatal medium spiny neurons (MSNs) triggered astrocyte signaling via γ-aminobutyric acid B (GABAB) receptors. Selective chemogenetic activation of this pathway in striatal astrocytes in vivo resulted in acute behavioral hyperactivity and disrupted attention. Such responses also resulted in upregulation of the synaptogenic cue thrombospondin-1 (TSP1) in astrocytes, increased excitatory synapses, enhanced corticostriatal synaptic transmission, and increased MSN action potential firing in vivo. All of these changes were reversed by blocking TSP1 effects. Our data identify a form of bidirectional neuron-astrocyte communication and demonstrate that acute reactivation of a single latent astrocyte synaptogenic cue alters striatal circuits controlling behavior, revealing astrocytes and the TSP1 pathway as therapeutic targets in hyperactivity, attention deficit, and related psychiatric disorders.

A Soluble Platelet-Derived Growth Factor Receptor-β Originates via Pre-mRNA Splicing in the Healthy Brain and is Differentially Regulated during Hypoxia and Aging

bioRxiv : the preprint server for biology

2023 Feb 04

Payne, LB;Abdelazim, H;Hoque, M;Barnes, A;Mironovova, Z;Willi, CE;Darden, J;Jenkins-Houk, C;Sedovy, MW;Johnstone, SR;Chappell, JC;
PMID: 36778261 | DOI: 10.1101/2023.02.03.527005

The platelet-derived growth factor-BB (PDGF-BB) pathway provides critical regulation of cerebrovascular pericytes, orchestrating their investment and retention within the brain microcirculation. Dysregulated PDGF Receptor-beta (PDGFRβ) signaling can lead to pericyte defects that compromise blood-brain barrier (BBB) integrity and cerebral perfusion, impairing neuronal activity and viability, which fuels cognitive and memory deficits. Receptor tyrosine kinases (RTKs) like PDGF-BB and vascular endothelial growth factor-A (VEGF-A) are often modulated by soluble isoforms of cognate receptors that establish signaling activity within a physiological range. Soluble PDGFRβ (sPDGFRβ) isoforms have been reported to form by enzymatic cleavage from cerebrovascular mural cells, and pericytes in particular, largely under pathological conditions. However, pre-mRNA alternative splicing has not been widely explored as a possible mechanism for generating sPDGFRβ variants, and specifically during tissue homeostasis. Here, we found sPDGFRβ protein in the murine brain and other tissues under normal, physiological conditions. Utilizing brain samples for follow-on analysis, we identified mRNA sequences corresponding to sPDGFRβ isoforms, which facilitated construction of predicted protein structures and related amino acid sequences. Human cell lines yielded comparable sequences and protein model predictions. Retention of ligand binding capacity was confirmed for sPDGFRβ by co-immunoprecipitation. Visualizing fluorescently labeled sPDGFRβ transcripts revealed a spatial distribution corresponding to murine brain pericytes alongside cerebrovascular endothelium. Soluble PDGFRβ protein was detected throughout the brain parenchyma in distinct regions such as along the lateral ventricles, with signals also found more broadly adjacent to cerebral microvessels consistent with pericyte labeling. To better understand how sPDGFRβ variants might be regulated, we found elevated transcript and protein levels in the murine brain with age, and acute hypoxia increased sPDGFRβ variant transcripts in a cell-based model of intact vessels. Our findings indicate that soluble isoforms of PDGFRβ likely arise from pre-mRNA alternative splicing, in addition to enzymatic cleavage mechanisms, and these variants exist under normal physiological conditions. Follow-on studies will be needed to establish potential roles for sPDGFRβ in regulating PDGF-BB signaling to maintain pericyte quiescence, BBB integrity, and cerebral perfusion - critical processes underlying neuronal health and function, and in turn memory and cognition.
Anatomical barriers against SARS-CoV-2 neuroinvasion at vulnerable interfaces visualized in deceased COVID-19 patients

Neuron

2022 Nov 10

Khan, M;Clijsters, M;Choi, S;Backaert, W;Claerhout, M;Couvreur, F;Van Breda, L;Bourgeois, F;Speleman, K;Klein, S;Van Laethem, J;Verstappen, G;Dereli, AS;Yoo, SJ;Zhou, H;Dan Do, TN;Jochmans, D;Laenen, L;Debaveye, Y;De Munter, P;Gunst, J;Jorissen, M;Lagrou, K;Meersseman, P;Neyts, J;Thal, DR;Topsakal, V;Vandenbriele, C;Wauters, J;Mombaerts, P;Van Gerven, L;
PMID: 36446381 | DOI: 10.1016/j.neuron.2022.11.007

Can SARS-CoV-2 hitchhike on the olfactory projection and take a direct and short route from the nose into the brain? We reasoned that the neurotropic or neuroinvasive capacity of the virus, if it exists, should be most easily detectable in individuals who died in an acute phase of the infection. Here, we applied a postmortem bedside surgical procedure for the rapid procurement of tissue, blood, and cerebrospinal fluid samples from deceased COVID-19 patients infected with the Delta, Omicron BA.1, or Omicron BA.2 variants. Confocal imaging of sections stained with fluorescence RNAscope and immunohistochemistry afforded the light-microscopic visualization of extracellular SARS-CoV-2 virions in tissues. We failed to find evidence for viral invasion of the parenchyma of the olfactory bulb and the frontal lobe of the brain. Instead, we identified anatomical barriers at vulnerable interfaces, exemplified by perineurial olfactory nerve fibroblasts enwrapping olfactory axon fascicles in the lamina propria of the olfactory mucosa.
TREM2-independent oligodendrocyte, astrocyte, and T cell responses to tau and amyloid pathology in mouse models of Alzheimer disease

Cell reports

2021 Dec 28

Lee, SH;Rezzonico, MG;Friedman, BA;Huntley, MH;Meilandt, WJ;Pandey, S;Chen, YJ;Easton, A;Modrusan, Z;Hansen, DV;Sheng, M;Bohlen, CJ;
PMID: 34965428 | DOI: 10.1016/j.celrep.2021.110158

Non-neuronal responses in neurodegenerative disease have received increasing attention as important contributors to disease pathogenesis and progression. Here we utilize single-cell RNA sequencing to broadly profile 13 cell types in three different mouse models of Alzheimer disease (AD), capturing the effects of tau-only, amyloid-only, or combined tau-amyloid pathology. We highlight microglia, oligodendrocyte, astrocyte, and T cell responses and compare them across these models. Notably, we identify two distinct transcriptional states for oligodendrocytes emerging differentially across disease models, and we determine their spatial distribution. Furthermore, we explore the impact of Trem2 deletion in the context of combined pathology. Trem2 knockout mice exhibit severely blunted microglial responses to combined tau and amyloid pathology, but responses from non-microglial cell types (oligodendrocytes, astrocytes, and T cells) are relatively unchanged. These results delineate core transcriptional states that are engaged in response to AD pathology, and how they are influenced by a key AD risk gene, Trem2.
A molecular atlas of cell types and zonation in the brain vasculature

Nature.

2018 Feb 14

Vanlandewijck M, He L, Mäe MA, Andrae J, Ando K, Del Gaudio F, Nahar K, Lebouvier T, Laviña B, Gouveia L, Sun Y, Raschperger E, Räsänen M, Zarb Y, Mochizuki N, Keller A, Lendahl U, Betsholtz C.
PMID: 29443965 | DOI: 10.1038/nature25739

Cerebrovascular disease is the third most common cause of death in developed countries, but our understanding of the cells that compose the cerebral vasculature is limited. Here, using vascular single-cell transcriptomics, we provide molecular definitions for the principal types of blood vascular and vessel-associated cells in the adult mouse brain. We uncover the transcriptional basis of the gradual phenotypic change (zonation) along the arteriovenous axis and reveal unexpected cell type differences: a seamless continuum for endothelial cells versus a punctuated continuum for mural cells. We also provide insight into pericyte organotypicity and define a population of perivascular fibroblast-like cells that are present on all vessel types except capillaries. Our work illustrates the power of single-cell transcriptomics to decode the higher organizational principles of a tissue and may provide the initial chapter in a molecular encyclopaedia of the mammalian vasculature.

A genetic tool for the longitudinal study of a subset of post-inflammatory reactive astrocytes

Cell reports methods

2022 Aug 22

Agnew-Svoboda, W;Ubina, T;Figueroa, Z;Wong, YC;Vizcarra, EA;Roebini, B;Wilson, EH;Fiacco, TA;Riccomagno, MM;
PMID: 36046623 | DOI: 10.1016/j.crmeth.2022.100276

Astrocytes are vital support cells that ensure proper brain function. In brain disease, astrocytes reprogram into a reactive state that alters many of their cellular roles. A long-standing question in the field is whether downregulation of reactive astrocyte (RA) markers during resolution of inflammation is because these astrocytes revert back to a non-reactive state or die and are replaced. This has proven difficult to answer mainly because existing genetic tools cannot distinguish between healthy versus RAs. Here we describe the generation of an inducible genetic tool that can be used to specifically target and label a subset of RAs. Longitudinal analysis of an acute inflammation model using this tool revealed that the previously observed downregulation of RA markers after inflammation is likely due to changes in gene expression and not because of cell death. Our findings suggest that cellular changes associated with astrogliosis after acute inflammation are largely reversible.

Pages

  • 1
  • 2
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?