ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Neuron
2017 Jun 29
Xiao L, Priest MF, Nasenbeny J, Lu T, Kozorovitskiy Y.
PMID: 28669546 | DOI: 10.1016/j.neuron.2017.06.003
The release of dopamine (DA) regulates rewarding behavior and motor actions through striatum-targeting efferents from ventral tegmental area (VTA) and substantia nigra pars compacta (SNc). Here, we map and functionally characterize axonal projections from oxytocin neurons in the hypothalamic paraventricular nucleus to midbrain DA regions. Electrophysiological recordings of DA neurons reveal that both the application of oxytocin and optogenetic stimulation of oxytocinergic terminals suffice to increase DA neuron activity in the VTA but downregulate it in SNc. This biased modulation is mediated by oxytocin and vasopressin G-protein-coupled receptors. Oxytocin release directly activates DA neurons and indirectly inhibits them through local GABA neurons, but the relative magnitudes of the two mechanisms differ in VTA and SNc. Oxytocin-modulated DA neurons give rise to canonical striatal projections. Since hypothalamic oxytocinergic projections also target the striatum, oxytocin is poised to bias the balance of DA tone through multiple sites in vertebrate reward circuits.
Cell rep
2020 Feb 18
Salesse C, Charest J, Doucet-Beaupr� H, Castonguay AM, Labrecque S, De Koninck P, L�vesque M
PMID: 32075770 | DOI: 10.1016/j.celrep.2020.01.084
Nature communications
2023 Jan 23
Jung, M;Dourado, M;Maksymetz, J;Jacobson, A;Laufer, BI;Baca, M;Foreman, O;Hackos, DH;Riol-Blanco, L;Kaminker, JS;
PMID: 36690629 | DOI: 10.1038/s41467-023-36014-0
Scientific reports
2022 Mar 30
Minatoguchi, S;Saito, S;Furuhashi, K;Sawa, Y;Okazaki, M;Shimamura, Y;Kaihan, AB;Hashimoto, Y;Yasuda, Y;Hara, A;Mizutani, Y;Ando, R;Kato, N;Ishimoto, T;Tsuboi, N;Esaki, N;Matsuyama, M;Shiraki, Y;Kobayashi, H;Asai, N;Enomoto, A;Maruyama, S;
PMID: 35354870 | DOI: 10.1038/s41598-022-09331-5
Basic Res Cardiol.
2018 Jun 04
Mouton AJ, DeLeon-Pennell KY, Rivera Gonzalez OJ, Flynn ER, Freeman TC, Saucerman JJ, Garrett MR, Ma Y, Harmancey R, Lindsey ML.
PMID: 29868933 | DOI: 10.1007/s00395-018-0686-x
In response to myocardial infarction (MI), cardiac macrophages regulate inflammation and scar formation. We hypothesized that macrophages undergo polarization state changes over the MI time course and assessed macrophage polarization transcriptomic signatures over the first week of MI. C57BL/6 J male mice (3-6 months old) were subjected to permanent coronary artery ligation to induce MI, and macrophages were isolated from the infarct region at days 1, 3, and 7 post-MI. Day 0, no MI resident cardiac macrophages served as the negative MI control. Whole transcriptome analysis was performed using RNA-sequencing on n = 4 pooled sets for each time. Day 1 macrophages displayed a unique pro-inflammatory, extracellular matrix (ECM)-degrading signature. By flow cytometry, day 0 macrophages were largely F4/80highLy6Clow resident macrophages, whereas day 1 macrophages were largely F4/80lowLy6Chigh infiltrating monocytes. Day 3 macrophages exhibited increased proliferation and phagocytosis, and expression of genes related to mitochondrial function and oxidative phosphorylation, indicative of metabolic reprogramming. Day 7 macrophages displayed a pro-reparative signature enriched for genes involved in ECM remodeling and scar formation. By triple in situ hybridization, day 7 infarct macrophages in vivo expressed collagen I and periostin mRNA. Our results indicate macrophages show distinct gene expression profiles over the first week of MI, with metabolic reprogramming important for polarization. In addition to serving as indirect mediators of ECM remodeling, macrophages are a direct source of ECM components. Our study is the first to report the detailed changes in the macrophage transcriptome over the first week of MI.
Am J Respir Crit Care Med.
2019 Apr 09
Savary G, Dewaeles E, Diazzi S, Buscot M, Nottet N, Fassy J, Courcot E, Henaoui IS, Lemaire J, Martis N, Van der Hauwaert C, Pons N, Magnone V, Leroy S, Hofman V, Plantier L, Lebrigand K, Paquet A, Lino Cardenas CL, Vassaux G, Hofman P, Günther A, Crestani B, Wallaert B, Rezzonico R, Brousseau T, Glowacki F, Bellusci S, Perrais M, Broly F, Barbry P, Marquette CH, Cauffiez C, Mari B, Pottier N.
PMID: 30964696 | DOI: 10.1164/rccm.201807-1237OC
Abstract
RATIONALE:
Given the paucity of effective treatments for Idiopathic Pulmonary Fibrosis (IPF), new insights into the deleterious mechanisms controlling lung fibroblast activation, the key cell type driving the fibrogenic process, are essential to develop new therapeutic strategies. Transforming growth factor β (TGF-β) is the main pro-fibrotic factor, but its inhibition is associated with severe side effects due to its pleiotropic role.
OBJECTIVES:
We hypothesized that downstream non-coding effectors of TGF-β in fibroblasts may represent new effective therapeutic targets whose modulation may be well-tolerated.
METHODS:
We investigated the whole non-coding fraction of TGF-β-stimulated lung fibroblast transcriptome to identify new genomic determinants of lung fibroblast differentiation into myofibroblast. Differential expression of the long non-coding RNA DNM3OS and its associated miRNAs was validated in a murine model of pulmonary fibrosis and in IPF tissue samples. Distinct and complementary antisense oligonucleotide-based strategies aiming at interfering with DNM3OS were used to elucidate the role of DNM3OS and its associated miRNAs in IPF pathogenesis.
MEASUREMENTS AND MAIN RESULTS:
We identified DNM3OS as a fibroblast-specific critical downstream effector of TGF-β-induced lung myofibroblast activation. Mechanistically, DNM3OS regulates this process in trans by giving rise to three distinct profibrotic mature miRNAs (i.e. miR-199a-5p/3p and miR-214-3p), which influence both SMAD and non-SMAD components of TGF-β signaling in a multifaceted way. In vivo, we showed that interfering with DNM3OS function not only prevents lung fibrosis but also improves established pulmonary fibrosis.
CONCLUSION:
Pharmacological approaches aiming at interfering with DNM3OS may represent new effective therapeutic strategies in IPF.
JNeurosci
2017 Oct 24
Shi Y, Stornetta RL, Stornetta DS, Onengut-Gumuscu S, Farber EA, Turner SD, Guyenet PG, Bayliss DA.
PMID: 29066557 | DOI: 10.1523/JNEUROSCI.2055-17.2017
The retrotrapezoid nucleus (RTN) consists, by definition, of Phox2b-expressing, glutamatergic, non-catecholaminergic, non-cholinergic neurons located in the parafacial region of the medulla oblongata. An unknown proportion of RTN neurons are central respiratory chemoreceptors and there is mounting evidence for biochemical diversity among these cells. Here, we used multiplexed in situ hybridization and single-cell RNA-Seq in male and female mice to provide a more comprehensive view of the phenotypic diversity of RTN neurons. We now demonstrate that the RTN of mice can be identified with a single and specific marker, Nmb mRNA. Most (∼75%) RTN neurons express low-to-moderate levels of Nmb and display chemoreceptor properties. Namely they are activated by hypercapnia, but not by hypoxia, and express proton sensors, Kcnk5 and Gpr4 These Nmb-low RTN neurons also express varying levels of transcripts for Gal, Penk and Adcyap1,and receptors for substance P, orexin, serotonin and ATP. A subset of RTN neurons (∼20-25%), typically larger than average, express very high levels of Nmb mRNA. These Nmb-high RTN neurons do not express Fos after hypercapnia, have low-to-undetectable levels of Kcnk5 or Gpr4 transcripts; they also express Adcyap1, but are essentially devoid of Penk and Gal transcripts. In male rats, Nmb is also a marker of the RTN but, unlike in mice, this gene is expressed by other types of nearby neurons located within the ventromedial medulla. In sum, Nmb is a selective marker of the RTN in rodents; Nmb-low neurons, the vast majority, are central respiratory chemoreceptors whereas Nmb-high neurons likely have other functions.SIGNIFICANCE STATEMENTCentral respiratory chemoreceptors regulate arterial PCO2 by adjusting lung ventilation. Such cells have recently been identified within the retrotrapezoid nucleus (RTN), a brainstem nucleus defined by genetic lineage and a cumbersome combination of markers. Using single-cell RNA-Seq and multiplexed in situ hybridization, we show here that a single marker, Neuromedin B mRNA (Nmb), identifies RTN neurons in rodents. We also suggest that >75% of these Nmb neurons are chemoreceptors because they are strongly activated by hypercapnia and express high levels of proton sensors (Kcnk5 and Gpr4). The other RTN neurons express very high levels of Nmb, but low levels of Kcnk5/Gpr4/pre-pro-galanin/pre-pro-enkephalin, and do not respond to hypercapnia. Their function is unknown.
Cell Rep.
2018 May 22
Yan Y, Peng C, Arvin MC, Jin XT, Kim VJ, Ramsey MD, Wang Y, Banala S, Wokosin DL, McIntosh JM, Lavis LD, Drenan RM.
PMID: 29791835 | DOI: 10.1016/j.celrep.2018.04.062
Ventral tegmental area (VTA) glutamate neurons are important components of reward circuitry, but whether they are subject to cholinergic modulation is unknown. To study this, we used molecular, physiological, and photostimulation techniques to examine nicotinic acetylcholine receptors (nAChRs) in VTA glutamate neurons. Cells in the medial VTA, where glutamate neurons are enriched, are responsive to acetylcholine (ACh) released from cholinergic axons. VTA VGLUT2+ neurons express mRNA and protein subunits known to comprise heteromeric nAChRs. Electrophysiology, coupled with two-photon microscopy and laser flash photolysis of photoactivatable nicotine, was used to demonstrate nAChR functional activity in the somatodendritic subcellular compartment of VTA VGLUT2+ neurons. Finally, optogenetic isolation of intrinsic VTA glutamatergic microcircuits along with gene-editing techniques demonstrated that nicotine potently modulates excitatory transmission within the VTA via heteromeric nAChRs. These results indicate that VTA glutamate neurons are modulated by cholinergic mechanisms and participate in the cascade of physiological responses to nicotine exposure.
Cell
2018 Aug 02
Shrestha BR, Chia C, Wu L, Kujawa SG, Liberman MC, Goodrich LV.
PMID: - | DOI: 10.1016/j.cell.2018.07.007
In the auditory system, type I spiral ganglion neurons (SGNs) convey complex acoustic information from inner hair cells (IHCs) to the brainstem. Although SGNs exhibit variation in physiological and anatomical properties, it is unclear which features are endogenous and which reflect input from synaptic partners. Using single-cell RNA sequencing, we derived a molecular classification of mouse type I SGNs comprising three subtypes that express unique combinations of Ca 2+ binding proteins, ion channel regulators, guidance molecules, and transcription factors. Based on connectivity and susceptibility to age-related loss, these subtypes correspond to those defined physiologically. Additional intrinsic differences among subtypes and across the tonotopic axis highlight an unexpectedly active role for SGNs in auditory processing. SGN identities emerge postnatally and are disrupted in a mouse model of deafness that lacks IHC-driven activity. These results elucidate the range, nature, and origins of SGN diversity, with implications for treatment of congenital deafness.
bioRxiv : the preprint server for biology
2023 Feb 04
Anderson, T;Mo, J;Gagarin, E;Sherwood, D;Blumenkrantz, M;Mao, E;Leon, G;Chen, HJ;Tseng, KC;Fabian, P;Crump, JG;Smeeton, J;
PMID: 36778403 | DOI: 10.1101/2023.02.03.527039
Cells
2021 Dec 10
Barr, JL;Kruse, A;Restaino, AC;Tulina, N;Stuckelberger, S;Vermeer, SJ;Williamson, CS;Vermeer, DW;Madeo, M;Stamp, J;Bell, M;Morgan, M;Yoon, JY;Mitchell, MA;Budina, A;Omran, DK;Schwartz, LE;Drapkin, R;Vermeer, PD;
PMID: 34944001 | DOI: 10.3390/cells10123491
Developmental cell
2022 Oct 24
Muhl, L;Mocci, G;Pietilä, R;Liu, J;He, L;Genové, G;Leptidis, S;Gustafsson, S;Buyandelger, B;Raschperger, E;Hansson, EM;Björkegren, JLM;Vanlandewijck, M;Lendahl, U;Betsholtz, C;
PMID: 36283392 | DOI: 10.1016/j.devcel.2022.09.015
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com