ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
J Dent Res.
2018 Apr 01
Vidovic-Zdrilic I, Vining KH, Vijaykumar A, Kalajzic I, Mooney DJ, Mina M.
PMID: 29649366 | DOI: 10.1177/0022034518769827
The goal of this study was to examine the effects of early and limited exposure of perivascular cells expressing α (αSMA) to fibroblast growth factor 2 (FGF2) in vivo. We performed in vivo fate mapping by inducible Cre-loxP and experimental pulp injury in molars to induce reparative dentinogenesis. Our results demonstrate that early delivery of exogenous FGF2 to exposed pulp led to proliferative expansion of αSMA-tdTomato+ cells and their accelerated differentiation into odontoblasts. In vivo lineage-tracing experiments showed that the calcified bridge/reparative dentin in FGF2-treated pulps were lined with an increased number of Dspp+ odontoblasts and devoid of BSP+ osteoblasts. The increased number of odontoblasts derived from αSMA-tdTomato+ cells and the formation of reparative dentin devoid of osteoblasts provide in vivo evidence for the stimulatory effects of FGF signaling on odontoblast differentiation from early progenitors in dental pulp.
Bone
2021 May 18
Zhao, L;Ito, S;Arai, A;Udagawa, N;Horibe, K;Hara, M;Nishida, D;Hosoya, A;Masuko, R;Okabe, K;Shin, M;Li, X;Matsuo, K;Abe, S;Matsunaga, S;Kobayashi, Y;Kagami, H;Mizoguchi, T;
PMID: 34020080 | DOI: 10.1016/j.bone.2021.116010
Cell Stem Cell.
2019 Mar 26
Wei X, Zhang L, Zhou Z, Kwon OJ, Zhang Y, Nguyen H, Dumpit R, True L, Nelson P, Dong B, Xue W, Birchmeier W, Taketo MM, Xu F, Creighton CJ, Ittmann MM, Xin L.
PMID: 30982770 | DOI: 10.1016/j.stem.2019.03.010
Cell-autonomous Wnt signaling has well-characterized functions in controlling stem cell activity, including in the prostate. While niche cells secrete Wnt ligands, the effects of Wnt signaling in niche cells per se are less understood. Here, we show that stromal cells in the proximal prostatic duct near the urethra, a mouse prostate stem cell niche, not only produce multiple Wnt ligands but also exhibit strong Wnt/β-catenin activity. The non-canonical Wnt ligand Wnt5a, secreted by proximal stromal cells, directly inhibits proliefration of prostate epithelial stem or progenitor cells whereas stromal cell-autonomous canonical Wnt/β-catenin signaling indirectly suppresses prostate stem or progenitor activity via the transforming growth factor β (TGFβ) pathway. Collectively, these pathways restrain the proliferative potential of epithelial cells in the proximal prostatic ducts. Human prostate likewise exhibits spatially restricted distribution of stromal Wnt/β-catenin activity, suggesting a conserved mechanism for tissue patterning. Thus, this study shows how distinct stromal signaling mechanisms within the prostate cooperate to regulate tissue homeostasis.
Nature communications
2023 Jan 20
Pei, F;Ma, L;Jing, J;Feng, J;Yuan, Y;Guo, T;Han, X;Ho, TV;Lei, J;He, J;Zhang, M;Chen, JF;Chai, Y;
PMID: 36670126 | DOI: 10.1038/s41467-023-35977-4
J Dent Res.
2016 Nov 10
Vidovic I, Banerjee A, Fatahi R, Matthews BG, Dyment NA, Kalajzic I, Mina M.
PMID: 27834664 | DOI: 10.1177/0022034516678208
The goal of this study was to examine the contribution of perivascular cells to odontoblasts during the development, growth, and repair of dentin using mouse molars as a model. We used an inducible, Cre-loxP in vivo fate-mapping approach to examine the contributions of the descendants of cells expressing the αSMA-CreERT2 transgene to the odontoblast lineage. In vivo lineage-tracing experiments in molars showed the contribution of αSMA-tdTomato+ cells to a small number of newly formed odontoblasts during primary dentinogenesis. Using an experimental pulp exposure model in molars to induce reparative dentinogenesis, we demonstrate the contribution of αSMA-tdTomato+ cells to cells secreting reparative dentin. Our results demonstrate that αSMA-tdTomato+ cells differentiated into Col2.3-GFP+ cells composed of both Dspp+ odontoblasts and Bsp+ osteoblasts. Our findings identify a population of mesenchymal progenitor cells capable of giving rise to a second generation of odontoblasts during reparative dentinogenesis. This population also makes a small contribution to odontoblasts during primary dentinogenesis.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com