ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Cell reports
2022 Aug 23
Zhou, B;Claflin, KE;Flippo, KH;Sullivan, AI;Asghari, A;Tadinada, SM;Jensen-Cody, SO;Abel, T;Potthoff, MJ;
PMID: 36001982 | DOI: 10.1016/j.celrep.2022.111239
Cell reports
2022 Feb 22
Xie, Y;Kuan, AT;Wang, W;Herbert, ZT;Mosto, O;Olukoya, O;Adam, M;Vu, S;Kim, M;Tran, D;Gómez, N;Charpentier, C;Sorour, I;Lacey, TE;Tolstorukov, MY;Sabatini, BL;Lee, WA;Harwell, CC;
PMID: 35196485 | DOI: 10.1016/j.celrep.2022.110416
Biological Psychiatry
2022 Dec 01
Morris, C;Watkins, D;Shah, N;Pennington, T;Hens, B;Qi, G;Doud, E;Mosley, A;Atwood, B;Baucum, A;
| DOI: 10.1016/j.biopsych.2022.12.008
Wellcome Open Research
2021 Sep 30
Santana-Varela, S;Bogdanov, Y;Gossage, S;Okorokov, A;Li, S;de Clauser, L;Alves-Simoes, M;Sexton, J;Iseppon, F;Luiz, A;Zhao, J;Wood, J;Cox, J;
| DOI: 10.12688/wellcomeopenres.17090.1
J Neurosci.
2019 Feb 19
Stagkourakis S, Dunevall J, Taleat Z, Ewing AG, Broberger C.
PMID: 30782976 | DOI: 10.1523/JNEUROSCI.2339-18.2019
The relationship between neuronal impulse activity and neurotransmitter release remains elusive. This issue is especially poorly understood in the neuroendocrine system, with its particular demands on periodically voluminous release of neurohormones at the interface of axon terminals and vasculature. A shortage of techniques with sufficient temporal resolution has hindered real-time monitoring of the secretion of the peptides that dominate among the neurohormones. The lactotropic axis provides an important exception in neurochemical identity, however, as pituitary prolactin secretion is primarily under monoaminergic control, via tuberoinfundibular dopamine (TIDA) neurons projecting to the median eminence (ME). Here, we combined optogenetic stimulation and fast-scan cyclic voltammetry to address dopamine release dynamics in the male mouse TIDA system. Imposing different discharge frequencies during brief (3 sec) stimulation of TIDA terminals in the ME revealed that dopamine output is maximal at 10 Hz, which was found to parallel the TIDA neuron action potential frequency distribution. Over more sustained stimulation periods (150 sec), maximal output occurred at 5 Hz. Application of the dopamine transporter blocker, methylphenidate, significantly increased dopamine levels in the ME, supporting a functional role of the transporter at the neurons' terminals. Lastly, TIDA neuron stimulation at the cell body yielded perisomatic release of dopamine, which may contribute to an ultra-fast negative feedback mechanism to constrain TIDA electrical activity. Together, these data shed light on how spiking patterns in the neuroendocrine system translate to vesicular release towards the pituitary and identify how dopamine dynamics are controlled in the TIDA system at different cellular compartments.SIGNIFICANCE STATEMENTA central question in neuroscience is the complex relationship between neuronal discharge activity and transmitter release. By combining optogenetic stimulation and voltammetry, we address this issue in dopamine neurons of the neuroendocrine system, which faces particular spatiotemporal demands on exocytotic release; large amounts of neurohormone need to be secreted into the portal capillaries with precise timing to adapt to physiological requirements. Our data show that release is maximal around the neurons' default firing frequency. We further provide support for functional dopamine transport at the neurovascular terminals, shedding light on a long-standing controversy about the existence of neuroendocrine transmitter reuptake. Finally, we show that dopamine release occurs also at the somatodendritic level, providing a substrate for an ultra-short autoregulatory feedback loop.
Nat Neurosci.
2018 Mar 19
Huang J, Polgár E, Solinski HJ, Mishra SK, Tseng PY, Iwagaki N, Boyle KA, Dickie AC, Kriegbaum MC, Wildner H, Zeilhofer HU, Watanabe M, Riddell JS, Todd AJ, Hoon MA.
PMID: 29556030 | DOI: 10.1038/s41593-018-0119-z
Stimuli that elicit itch are detected by sensory neurons that innervate the skin. This information is processed by the spinal cord; however, the way in which this occurs is still poorly understood. Here we investigated the neuronal pathways for itch neurotransmission, particularly the contribution of the neuropeptide somatostatin. We find that in the periphery, somatostatin is exclusively expressed in Nppb+ neurons, and we demonstrate that Nppb+somatostatin+ cells function as pruriceptors. Employing chemogenetics, pharmacology and cell-specific ablation methods, we demonstrate that somatostatin potentiates itch by inhibiting inhibitory dynorphin neurons, which results in disinhibition of GRPR+neurons. Furthermore, elimination of somatostatin from primary afferents and/or from spinal interneurons demonstrates differential involvement of the peptide released from these sources in itch and pain. Our results define the neural circuit underlying somatostatin-induced itch and characterize a contrasting antinociceptive role for the peptide.
Elife.
2018 Mar 20
Niquille M, Limoni G, Markopoulos F, Cadilhac C, Prados J, Holtmaat A, Dayer A.
PMID: 29557780 | DOI: 10.7554/eLife.32017
Delineating the basic cellular components of cortical inhibitory circuits remains a fundamental issue in order to understand their specific contributions to microcircuit function. It is still unclear how current classifications of cortical interneuron subtypes relate to biological processes such as their developmental specification. Here we identified the developmental trajectory of neurogliaform cells (NGCs), the main effectors of a powerful inhibitory motif recruited by long-range connections. Using in vivo genetic lineage-tracing in mice, we report that NGCs originate from a specific pool of 5-HT3AR-expressing Hmx3+ cells located in the preoptic area (POA). Hmx3-derived 5-HT3AR+ cortical interneurons (INs) expressed the transcription factors PROX1, NR2F2, the marker reelin but not VIP and exhibited the molecular, morphological and electrophysiological profile of NGCs. Overall, these results indicate that NGCs are a distinct class of INs with a unique developmental trajectory and open the possibility to study their specific functional contribution to cortical inhibitory microcircuit motifs.
Neuron
2022 Sep 23
Yao, Y;Barger, Z;Saffari Doost, M;Tso, CF;Darmohray, D;Silverman, D;Liu, D;Ma, C;Cetin, A;Yao, S;Zeng, H;Dan, Y;
PMID: 36170850 | DOI: 10.1016/j.neuron.2022.08.027
Scientific reports
2022 Mar 30
Minatoguchi, S;Saito, S;Furuhashi, K;Sawa, Y;Okazaki, M;Shimamura, Y;Kaihan, AB;Hashimoto, Y;Yasuda, Y;Hara, A;Mizutani, Y;Ando, R;Kato, N;Ishimoto, T;Tsuboi, N;Esaki, N;Matsuyama, M;Shiraki, Y;Kobayashi, H;Asai, N;Enomoto, A;Maruyama, S;
PMID: 35354870 | DOI: 10.1038/s41598-022-09331-5
J Comp Neurol.
2019 Apr 04
Ch'ng SS, Fu J, Brown RM, Smith C, Hossain MA, McDougall SJ, Lawrence AJ.
PMID: 30947365 | DOI: 10.1002/cne.24695
The bed nucleus of the stria terminalis (BNST) is a critical node involved in stress and reward-related behaviors. Relaxin family peptide receptor 3 (RXFP3) signaling in the BNST has been implicated in stress-induced alcohol seeking behavior. However, the neurochemical phenotype and connectivity of BNST RXFP3-expressing (RXFP3+) cells have yet to be elucidated. We interrogated the molecular signature and electrophysiological properties of BNST RXFP3+ neurons using a RXFP3-Cre reporter mouse line. BNST RXFP3+ cells are circumscribed to the dorsal BNST (dBNST) and are neurochemically heterogeneous, comprising a mix of inhibitory and excitatory neurons. Immunohistochemistry revealed that ~48% of BNST RXFP3+ neurons are GABAergic, and a quarter of these co-express the calcium-binding protein, calbindin. A subset of BNST RXFP3+ cells (~41%) co-express CaMKIIα, suggesting this subpopulation of BNST RXFP3+ neurons are excitatory. Corroborating this, RNAscope™ revealed that ~35% of BNST RXFP3+ cells express vVGluT2 mRNA, indicating a subpopulation of RXFP3+ neurons are glutamatergic. RXFP3+ neurons show direct hyperpolarization to bath application of a selective RXFP3 agonist, RXFP3-A2, while around 50% of cells were depolarised by exogenous corticotrophin releasing factor. In behaviorally naive mice the majority of RXFP3+ neurons were Type II cells exhibiting Ih and T type calcium mediated currents. However, chronic swim stress caused persistent plasticity, decreasing the proportion of neurons that express these channels. These studies are the first to characterize the BNST RXFP3 system in mouse and lay the foundation for future functional studies appraising the role of the murine BNST RXFP3 system in more complex behaviors.
J Neurosci.
2019 Apr 10
Mackay JP, Bompolaki M, DeJoseph MR, Michaelson SD, Urban JH, Colmers WF.
PMID: 30971438 | DOI: 10.1523/JNEUROSCI.2226-18.2019
Although neuropeptide Y (NPY) has potent anxiolytic actions within the basolateral amygdala (BLA), selective activation of BLA NPY Y2receptors (Y2R) acutely increases anxiety by an unknown mechanism. Using ex vivo male rat brain slice electrophysiology, we show that the selective Y2R agonist, [ahx5-24]NPY, reduced the frequency of GABAA-mediated miniature inhibitory post synaptic currents (mIPSC) in BLA principal neurons (PN). [ahx5-24]NPY also reduced tonic activation of GABAB receptors (GABABR), which increased PN excitability through inhibition of a tonic, inwardly-rectifying potassium current (KIR ). Surprisingly, Y2R-sensitive GABABR currents were action potential-independent, persisting after treatment with tetrodotoxin. Additionally, the Ca2+-dependent, slow afterhyperpolarizing K+ current (IsAHP ) was enhanced in roughly half of the Y2R-sensitive PNs, possibly from enhanced Ca2+ influx, permitted by reduced GABABR tone. In male and female mice expressing tdTomato in Y2R-expressing cells (tdT-Y2R mice), immunohistochemistry revealed that BLA somatostatin interneurons (SST IN) express Y2Rs, as do a significant subset of BLA PNs. In tdT-Y2R mice, [ahx5-24]NPY increased excitability and suppressed the KIR in nearly all BLA PNs independent of tdT-Y2R fluorescence, consistent with presynaptic Y2Rs on SST INs mediating the above effects. However, only tdT-Y2R-expressing PNs responded to [ahx5-24]NPY with an enhancement of the IsAHP Ultimately, increased PN excitability via acute Y2R activation likely correlates with enhanced BLA output, consistent with reported Y2R-mediated anxiogenesis. Furthermore, we demonstrate: 1) a novel mechanism whereby activity-independent GABA release can powerfully dampen BLA neuronal excitability via postsynaptic GABABRs, and 2) that this tonic inhibition can be interrupted by neuromodulation, here by NPY via Y2Rs.SIGNIFICANCE STATEMENTWithin the basolateral amygdala (BLA), neuropeptide Y (NPY) is potently anxiolytic. However, selective activation of NPY2-receptors (Y2R) increases anxiety by an unknown mechanism. We show that activation of BLA Y2Rs decreases tonic GABA release onto BLA principal neurons (PN), probably from Y2R-expressing somatostatin interneurons some of which co-express NPY. This increases PN excitability by reducing GABAB receptor (GABABR)-mediated activation of G-protein-coupled, inwardly-rectifying K+(GIRK) currents. Tonic, Y2R- sensitive GABABR currents unexpectedly persisted in the absence of action potential firing, revealing, to our knowledge, the first report of substantial, activity-independent GABABR activation. Ultimately, we provide a plausible explanation for Y2R-mediated anxiogenesis in vivo and describe a novel and modulatable means of damping neuronal excitability.
Elife.
2018 Nov 01
Soh H, Park S, Ryan K, Springer K, Maheshwari A, Tzingounis AV.
PMID: 30382937 | DOI: 10.7554/eLife.38617
KCNQ2/3 channels, ubiquitously expressed neuronal potassium channels, have emerged as indispensable regulators of brain network activity. Despite their critical role in brain homeostasis, the mechanisms by which KCNQ2/3 dysfunction lead to hypersychrony are not fully known. Here, we show that deletion of KCNQ2/3 channels changed PV+ interneurons', but not SST+ interneurons', firing properties. We also find that deletion of either KCNQ2/3 or KCNQ2 channels from PV+ interneurons led to elevated homeostatic potentiation of fast excitatory transmission in pyramidal neurons. Pvalb-Kcnq2 null-mice showed increased seizure susceptibility, suggesting that decreases in interneuron KCNQ2/3 activity remodels excitatory networks, providing a new function for these channels.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com