Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (15)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (108) Apply TBD filter
  • HPV E6/E7 (75) Apply HPV E6/E7 filter
  • Lgr5 (61) Apply Lgr5 filter
  • PD-L1 (25) Apply PD-L1 filter
  • HPV-HR18 (20) Apply HPV-HR18 filter
  • Axin2 (19) Apply Axin2 filter
  • HPV (19) Apply HPV filter
  • GLI1 (15) Apply GLI1 filter
  • HER2 (15) Apply HER2 filter
  • FGFR1 (13) Apply FGFR1 filter
  • MALAT1 (12) Apply MALAT1 filter
  • CD68 (11) Apply CD68 filter
  • Ifng (10) Apply Ifng filter
  • MYC (10) Apply MYC filter
  • CXCL10 (9) Apply CXCL10 filter
  • OLFM4 (9) Apply OLFM4 filter
  • AR-V7 (8) Apply AR-V7 filter
  • (-) Remove EBER1 filter EBER1 (8)
  • CD274 (7) Apply CD274 filter
  • ETV1 (7) Apply ETV1 filter
  • GREM1 (7) Apply GREM1 filter
  • HOTAIR (7) Apply HOTAIR filter
  • OLFM4 (7) Apply OLFM4 filter
  • (-) Remove TERT filter TERT (7)
  • HPV HR18 (7) Apply HPV HR18 filter
  • AR (6) Apply AR filter
  • BRCA1 (6) Apply BRCA1 filter
  • CD3E (6) Apply CD3E filter
  • CD4 (6) Apply CD4 filter
  • MET (6) Apply MET filter
  • CSF1 (6) Apply CSF1 filter
  • Ccl2 (6) Apply Ccl2 filter
  • Ptch1 (6) Apply Ptch1 filter
  • FGFR2 (6) Apply FGFR2 filter
  • Vegfa (6) Apply Vegfa filter
  • PDGFRA (6) Apply PDGFRA filter
  • CXCL12 (6) Apply CXCL12 filter
  • HPV18 (6) Apply HPV18 filter
  • Il-6 (6) Apply Il-6 filter
  • CD3 (6) Apply CD3 filter
  • SOX2 (5) Apply SOX2 filter
  • EGFR (5) Apply EGFR filter
  • ESR1 (5) Apply ESR1 filter
  • DUSP6 (5) Apply DUSP6 filter
  • MDM2 (5) Apply MDM2 filter
  • MKI67 (5) Apply MKI67 filter
  • NOTUM (5) Apply NOTUM filter
  • PTEN (5) Apply PTEN filter
  • Cxcl1 (5) Apply Cxcl1 filter
  • HPV16 (5) Apply HPV16 filter

Product

  • RNAscope 2.0 Assay (4) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 VS Assay (2) Apply RNAscope 2.5 VS Assay filter
  • RNAscope Multiplex Fluorescent Assay (2) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope (1) Apply RNAscope filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (1) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope 2.5 HD Red assay (1) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope Fluorescent Multiplex Assay (1) Apply RNAscope Fluorescent Multiplex Assay filter

Research area

  • (-) Remove Cancer filter Cancer (15)
  • Infectious Disease (2) Apply Infectious Disease filter
  • Stem Cells (2) Apply Stem Cells filter
  • Epstein-Barr (1) Apply Epstein-Barr filter
  • Infectious Disease: Epstein-Barr virus (1) Apply Infectious Disease: Epstein-Barr virus filter

Category

  • Publications (15) Apply Publications filter
Presence of lytic Epstein-Barr virus infection in nasopharyngeal carcinoma.

Head Neck.

2018 Mar 09

Yu F, Lu Y, Petersson F, Wang DY, Loh KS.
PMID: 29522272 | DOI: 10.1002/hed.25131

Abstract

BACKGROUND:

Chromogenic Epstein-Barr virus-encoded RNA (EBER) in situ hybridization (EBER-ISH) is the gold standard to detect Epstein-Barr virus (EBV) but it is difficult to use in conjunction with immunohistochemistry (IHC). In this study, our purpose was to validate the sensitivity and specificity of RNAscope in detection of EBV infection in nasal epithelium and its stroma.

METHODS:

Fluorescence-based RNAscope EBER-ISH, BRLF1-ISH, and lineage marker-IHC were performed on archived formalin-fixed paraffin-embedded tissues from normal nasal cavity (n = 5), nasopharynx (n = 8), and nasopharyngeal carcinoma (NPC) specimens (n = 10).

RESULTS:

The EBERs were detected in 10 of 10 NPC samples but was absent in all normal tissues from the nasal cavity and nasopharynx. The EBERs were exclusively located in pan-cytokeratin (pan-CK)-positive tumor epithelial cells but not in CD45-positive leukocytes and vimentin-positive stromal fibroblasts. The level of EBER expression varied in tumor cells within patient and between patients as well. Additionally, 5 of 10 patients had positive BRLF-ISH.

CONCLUSION:

We developed a simple and reproducible method to simultaneously detect mRNA and protein in formalin-fixed paraffin-embedded tissues of NPC. As a single staining, traditional EBER continues to be useful; however, for interpretation of the phenotype of EBV-infected cells, RNAscope is superior. Significantly, we showed that lytic EBV infection took place in NPC tumors.

MYC drives overexpression of telomerase RNA (hTR/TERC) in prostate cancer.

J Pathol.

2017 Sep 09

Baena-Del Valle JA, Zheng Q, Esopi DM, Rubenstein M, Hubbard GK, Moncaliano MC, Hruszkewycz A, Vaghasia A, Yegnasubramanian S, Wheelan SJ, Meeker AK, Heaphy CM, Graham MK, De Marzo AM.
PMID: 28888037 | DOI: 10.1002/path.4980

Telomerase consists of at least two essential elements, an RNA component hTR or TERC that contains the template for telomere DNA addition, and a catalytic reverse transcriptase (TERT). While expression of TERT has been considered the key rate limiting component for telomerase activity, increasing evidence suggests an important role for the regulation of TERC in telomere maintenance and perhaps other functions in human cancer. By using three orthogonal methods including RNAseq, RT-qPCR, and an analytically validated chromogenic RNA in situ hybridization assay, we report consistent overexpression of TERC in prostate cancer. This overexpression occurs at the precursor stage (e.g. high grade prostatic intraepithelial neoplasia or PIN), and persists throughout all stages of disease progression. Levels of TERC correlate with levels of MYC (a known driver of prostate cancer) in clinical samples and we also show the following: forced reductions of MYC result in decreased TERC levels in 8 cancer cell lines (prostate, lung, breast, and colorectal); forced overexpression of MYC in PCa cell lines, and in the mouse prostate, results in increased TERC levels; human TERC promoter activity is decreased after MYC silencing; and MYC occupies the TERC locus as assessed by chromatin immunoprecipitation (ChIP). Finally, we show that knockdown of TERC by siRNA results in reduced proliferation of prostate cancer cell lines. These studies indicate that TERC is consistently overexpressed in all stages of prostatic adenocarcinoma, and its expression is regulated by MYC. These findings nominate TERC as a novel prostate cancer biomarker and therapeutic target.

Establishment of EBV latency in nasopharyngeal tumor epithelial cells by in vivo cell-mediated transfer infection

Otorhinolaryngol Head Neck Surg

2018 Jun 20

Yu F, Lu Y, Tay JK, Yoshiyama H, Loh KS.
PMID: - | DOI: 10.15761/OHNS.1000174

Epstein-Barr virus (EBV) is a herpesvirus associated with approximately 1% of tumors worldwide. Although EBV is consistently detected in nasopharyngeal carcinoma(NPC) biopsy, it is hardly detected in normal nasopharyngeal epithelium. The mechanism how virus establishes latent infection in tumor epithelial cells, including the source of virus and the route of entry, has not been fully elucidated largely due to the lack of appropriate in vivo models. We herein aim to investigate the potential route that epithelial cells are infected with EBV. To this end, we established in vivo model system by injection of cell-free EBV or EBV producer line Akata cells together with EBV negative NPC line HONE-1 cells. Akin to in vitro infections, we presented the first in vivo evidence that cell-mediated transfer infection via Akata cells was much more efficient than cell-free virus. These cells then expressed the EBV latency-associated small RNA EBERs, but not lytic antigens, such as BZLF1. However, when cells were inoculated at separate sites, EBV producer line Akata cell failed to demonstrate the ability of migrating from distant location to interact with HONE-1 cell to establish latent infection. In conclusion, cell-cell contact is critical for in vivo EBV infection of nasopharyngeal epithelial cells.

The landscape of fusion transcripts in spitzoid melanoma and biologically indeterminate spitzoid tumors by RNA sequencing.

Mod Pathol.

2016 Feb 19

Wu G, Barnhill RL, Lee S, Li Y, Shao Y, Easton J, Dalton J, Zhang J, Pappo A, Bahrami A.
PMID: 26892443 | DOI: 10.1038/modpathol.2016.37.

Kinase activation by chromosomal translocations is a common mechanism that drives tumorigenesis in spitzoid neoplasms. To explore the landscape of fusion transcripts in these tumors, we performed whole-transcriptome sequencing using formalin-fixed, paraffin-embedded (FFPE) tissues in malignant or biologically indeterminate spitzoid tumors from 7 patients (age 2-14 years). RNA sequence libraries enriched for coding regions were prepared and the sequencing was analyzed by a novel assembly-based algorithm designed for detecting complex fusions. In addition, tumor samples were screened for hotspot TERT promoter mutations, and telomerase expression was assessed by TERT mRNA in situ hybridization (ISH). Two patients had widespread metastasis and subsequently died of disease, and 5 patients had a benign clinical course on limited follow-up (mean: 30 months). RNA sequencing and TERT mRNA ISH were successful in six tumors and unsuccessful in one disseminating tumor because of low RNA quality. RNA sequencing identified a kinase fusion in five of the six sequenced tumors: TPM3-NTRK1 (2 tumors), complex rearrangements involving TPM3, ALK, and IL6R (1 tumor), BAIAP2L1-BRAF (1 tumor), and EML4-BRAF (1 disseminating tumor). All predicted chimeric transcripts were expressed at high levels and contained the intact kinase domain. In addition, two tumors each contained a second fusion gene, ARID1B-SNX9 or PTPRZ1-NFAM1. The detected chimeric genes were validated by home-brew break-apart or fusion fluorescence in situ hybridization (FISH). The two disseminating tumors each harbored the TERT promoter -124C>T (Chr 5:1,295,228 hg19 coordinate) mutation, whereas the remaining five tumors retained the wild-type gene. The presence of the -124C>T mutation correlated with telomerase expression by TERT mRNA ISH. In summary, we demonstrated complex fusion transcripts and novel partner genes for BRAF by RNA sequencing of FFPE samples. The diversity of gene fusions demonstrated by RNA sequencing defines the molecular heterogeneity of spitzoid neoplasms.

Detection of mRNA of Telomerase Protein in Benign Naevi and Melanomas Using RNAscope.

Appl Immunohistochem Mol Morphol.

2018 Aug 08

Baltzarsen PB, Georgsen JB, Nielsen PS, Steiniche T, Stougaard M.
PMID: 30095463 | DOI: 10.1097/PAI.0000000000000690

Telomerase is reactivated in most cancers and is possibly an early driver event in melanoma. Our aim was to test a novel in situ hybridization technique, RNAscope, for the detection of human telomerase reverse transcriptase (hTERT) mRNA in archival formalin-fixed, paraffin-embedded (FFPE) tissue and to compare the mRNA expression of melanomas and benign naevi. Furthermore, we wanted to see if hTERT mRNA could be a diagnostic or prognostic marker of melanoma. In situ hybridization for the detection of hTERT mRNA was performed on FFPE tissue of 17 melanomas and 13 benign naevi. We found a significant difference in the expression of hTERT mRNA between melanomas and benign naevi (P<0.001) and the expression of hTERT mRNA correlated with Breslow thickness (ρ=0.56, P=0.0205) and the Ki67 proliferation index (ρ=0.72, P=0.001). This study showed that RNAscope was a reliable in situ hybridization method for the detection of hTERT mRNA in FFPE tissue of melanomas and benign naevi. hTERT mRNA was more abundantly expressed in melanomas compared with benign naevi, but cannot be used solely as a diagnostic marker due to an overlap in expression. The hTERT mRNA expression in melanomas correlated with the prognostic markers Breslow thickness and the Ki67 index indicating a prognostic potential of hTERT mRNA.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited.

Prognostic implications and interaction of L1 methylation and p53 expression statuses in advanced gastric cancer.

Clin Epigenetics.

2019 May 14

Shin YJ, Kim Y, Wen X, Cho NY, Lee S, Kim WH, Kang GH.
PMID: 31088544 | DOI: 10.1186/s13148-019-0661-x

Abstract

BACKGROUND:

TP53 is frequently mutated across various tissue types of cancers. In normal cells, long interspersed nuclear element-1 (LINE-1, L1) is mostly repressed by DNA methylation in its 5' untranslated region but is activated by DNA demethylation process during tumorigenesis. p53 is indispensable for maintaining genomic stability and plays its role in controlling genomic stability by repressing retrotransposon activity. However, it is unclear whether p53 regulates expression or methylation of L1 differently depending on the mutational status of TP53. Four hundred ninety cases of advanced gastric cancer (AGC) were analyzed for their statuses in p53 expression and L1 methylation using immunohistochemistry and pyrosequencing, respectively. Whether L1 methylation and expression statuses were differently affected by types of TP53 mutants was analyzed in gastric cancer cell line.

RESULTS:

By p53 immunohistochemistry, tumors were classified into 4 groups according to the intensity and extent of stained tumor nuclei. L1 methylation level was significantly higher in p53 expression group 1 than in the other groups in which L1 methylation level was similar (P <  0.001). Although L1 methylation and p53 expression statuses were associated with patient survival, multivariate analysis revealed that L1 methylation was an independent prognostic parameter. In in vitro analysis of AGS cells with the introduction of wild type or mutant types of TP53, L1 methylation level and activity were different depending on types of TP53 mutation.

CONCLUSIONS:

Findings suggest that L1 methylation level is affected by TP53 mutation status; although, L1 methylation status was an independent prognostic parameter in patients with AGC. Further study is required to elucidate the mechanism of how wild type or mutant p53 affects L1 activity and methylation status of L1 CpG island.

EBV+ tumors exploit tumor cell-intrinsic and-extrinsic mechanisms to produce regulatory T cell-recruiting chemokines CCL17 and CCL22

PLoS pathogens

2022 Jan 01

Jorapur, A;Marshall, LA;Jacobson, S;Xu, M;Marubayashi, S;Zibinsky, M;Hu, DX;Robles, O;Jackson, JJ;Baloche, V;Busson, P;Wustrow, D;Brockstedt, DG;Talay, O;Kassner, PD;Cutler, G;
PMID: 35025968 | DOI: 10.1371/journal.ppat.1010200

The Epstein-Barr Virus (EBV) is involved in the etiology of multiple hematologic and epithelial human cancers. EBV+ tumors employ multiple immune escape mechanisms, including the recruitment of immunosuppressive regulatory T cells (Treg). Here, we show some EBV+ tumor cells express high levels of the chemokines CCL17 and CCL22 both in vitro and in vivo and that this expression mirrors the expression levels of expression of the EBV LMP1 gene in vitro. Patient samples from lymphoblastic (Hodgkin lymphoma) and epithelial (nasopharyngeal carcinoma; NPC) EBV+ tumors revealed CCL17 and CCL22 expression of both tumor cell-intrinsic and -extrinsic origin, depending on tumor type. NPCs grown as mouse xenografts likewise showed both mechanisms of chemokine production. Single cell RNA-sequencing revealed in vivo tumor cell-intrinsic CCL17 and CCL22 expression combined with expression from infiltrating classical resident and migratory dendritic cells in a CT26 colon cancer mouse tumor engineered to express LMP1. These data suggest that EBV-driven tumors employ dual mechanisms for CCL17 and CCL22 production. Importantly, both in vitro and in vivo Treg migration was effectively blocked by a novel, small molecule antagonist of CCR4, CCR4-351. Antagonism of the CCR4 receptor may thus be an effective means of activating the immune response against a wide spectrum of EBV+ tumors.
EBV persistence in gastric cancer cases conventionally classified as EBER-ISH negative

Infectious agents and cancer

2022 Nov 17

Siciliano, MC;Tornambè, S;Cevenini, G;Sorrentino, E;Granai, M;Giovannoni, G;Marrelli, D;Biviano, I;Roviello, F;Yoshiyama, H;Leoncini, L;Lazzi, S;Mundo, L;
PMID: 36397137 | DOI: 10.1186/s13027-022-00469-5

The Epstein-Barr virus (EBV) causes various B-cell lymphomas and epithelial malignancies, including gastric cancer (GC) at frequencies ranging from 5 to 10% in adenocarcinomas (ADK) to 80% in GC with lymphoid stroma (GCLS). Using high-sensitivity methods, we recently detected EBV traces in a large cohort of EBV-negative B-cell lymphomas, suggesting a hit-and-run mechanism.Here, we used routine and higher-sensitivity methods [droplet digital PCR (ddPCR) for EBV segments on microdissected tumour cells and RNAscope for EBNA1 mRNA] to assess EBV infection in a cohort of 40 GCs (28 ADK and 12 GCLS).ddPCR documented the presence of EBV nucleic acids in rare tumour cells of several cases conventionally classified as EBV-negative (ADK, 8/26; GCLS, 6/7). Similarly, RNAscope confirmed EBNA1 expression in rare tumour cells (ADK, 4/26; GCLS, 3/7). Finally, since EBV induces epigenetic changes that are heritable and retained after complete loss of the virus from the host cell, we studied the methylation pattern of EBV-specifically methylated genes (Timp2, Eya1) as a mark of previous EBV infection. Cases with EBV traces showed a considerable level of methylation in Timp2 and Eya1 genes that was similar to that observed in EBER-ISH positive cases and greater than cases not featuring any EBV traces.These findings suggest that: (a) EBV may contribute to gastric pathogenesis more widely than currently acknowledged and (b) indicate the methylation changes as a mechanistic framework for how EBV can act in a hit-and-run manner. Finally, we found that the viral state was of prognostic significance in univariate and multivariate analyses.
ARID1A and TERT promoter mutations in dedifferentiated meningioma

Cancer Genetics (2015).

Abedalthagafi MS, Wenya Linda Bi WL, Merrill PH, Gibson WJ, Rose MF, Du Z, Francis JM, Du R, Dunn IF, Ligon AH, Beroukhim R, Santagata S.
PMID: 25963524 | DOI: 10.1016/j.cancergen.2015.03.005

While WHO grade I meningiomas are considered benign, patients with WHO grade III meningiomas have very high mortality. The principles underlying tumor progression in meningioma are largely unknown yet a detailed understanding of these mechanisms will be required for effective management of patients with these high-grade, lethal tumors. We present a case of an intraventricular meningioma that at first presentation displayed remarkable morphologic heterogeneity – comprised of distinct regions independently fulfilling histopathologic criteria for WHO grade I, II and III designations. The lowest-grade regions had classic meningothelial features while the highest grade regions were markedly dedifferentiated. While progression in meningiomas is generally observed during recurrence following radiation and systemic medical therapies the current case offers us a snapshot into histologic progression and intratumor heterogeneity in a native, pre-treatment context. Using whole exome sequencing (WES) and high resolution array comparative genomic hybridization (aCGH) we observe marked genetic heterogeneity between the various areas. Notably, in the higher grade regions we find increased aneuploidy with progressive loss of heterozygosity, the emergence of mutations in the TERT promoter and compromise of ARID1A. These findings provide new insights into intratumoral heterogeneity in the evolution of malignant phenotypes in anaplastic meningiomas and potential pathways of malignant progression.
Telomerase reactivation induces progression of mouse Braf V600E-driven thyroid cancers without telomere lengthening

bioRxiv : the preprint server for biology

2023 Jan 24

Landa, I;Thornton, CE;Xu, B;Haase, J;Krishnamoorthy, GP;Hao, J;Knauf, JA;Herbert, ZT;Blasco, MA;Ghossein, R;Fagin, JA;
PMID: 36747657 | DOI: 10.1101/2023.01.24.525280

Mutations in the promoter of the telomerase reverse transcriptase ( TERT ) gene are the paradigm of a cross-cancer alteration in a non-coding region. TERT promoter mutations (TPMs) are biomarkers of poor prognosis in several tumors, including thyroid cancers. TPMs enhance TERT transcription, which is otherwise silenced in adult tissues, thus reactivating a bona fide oncoprotein. To study TERT deregulation and its downstream consequences, we generated a Tert mutant promoter mouse model via CRISPR/Cas9 engineering of the murine equivalent locus (Tert -123C>T ) and crossed it with thyroid-specific Braf V600E -mutant mice. We also employed an alternative model of Tert overexpression (K5-Tert). Whereas all Braf V600E animals developed well-differentiated papillary thyroid tumors, 29% and 36% of Braf V600E +Tert -123C>T and Braf V600E +K5-Tert mice progressed to poorly differentiated thyroid cancers at week 20, respectively. Braf+Tert tumors showed increased mitosis and necrosis in areas of solid growth, and older animals from these cohorts displayed anaplastic-like features, i.e., spindle cells and macrophage infiltration. Murine Tert promoter mutation increased Tert transcription in vitro and in vivo , but temporal and intra-tumoral heterogeneity was observed. RNA-sequencing of thyroid tumor cells showed that processes other than the canonical Tert-mediated telomere maintenance role operate in these specimens. Pathway analysis showed that MAPK and PI3K/AKT signaling, as well as processes not previously associated with this tumor etiology, involving cytokine and chemokine signaling, were overactivated. Braf+Tert animals remained responsive to MAPK pathway inhibitors. These models constitute useful pre-clinical tools to understand the cell-autonomous and microenvironment-related consequences of Tert-mediated progression in advanced thyroid cancers and other aggressive tumors carrying TPMs.
Detection of Epstein-Barr virus encoded RNA in fixed cells and tissues using CRISPR/Cas-mediated RCasFISH

Analytical biochemistry

2021 Apr 26

Chen, K;Wang, M;Zhang, R;Li, J;
PMID: 33915117 | DOI: 10.1016/j.ab.2021.114211

Identification of Epstein-Barr virus (EBV)-infected cells is critical for the diagnosis and clinical management of EBV-associated diseases. EBV-encoded RNA (EBER) located in the nucleus is a reliable marker due to its high levels of expression and inherent stability in tissue specimens. EBER in situ hybridization has long been the gold standard for detecting tumor-associated latent EBV infection and is valuable in determining the primary site and radiation fields of EBV-related malignancies. However, reliable detection is somewhat restricted by diffused signal and time-consuming procedure of this method, especially when proteins and RNA needed to be labeled simultaneously. Here, we optimized and validated our CRISPR-dCas9 mediated in situ RNA imaging tool-RCasFISH that enabled us to detect EBER rapidly and was compatible with IHC methods in fixed cells and tissue sections. Our approach could provide an attractive alternative for the molecular diagnosis of latent EBV infection.
Expression profile of intestinal stem cell markers in colitis-associated carcinogenesis

Scientific Reports

2017 Jul 26

Kim HS, Lee C, Kim WH, Maeng YH, Jang BG.
PMID: 28747693 | DOI: 10.1038/s41598-017-06900-x

The intestinal epithelium has two distinct two stem cell populations, namely, crypt base columnar (CBC) cells and +4 cells. Several specific markers have been identified for each stem cell population. In this study, we examined the expression profiles of these markers in colitis-associated carcinogenesis (CAC) to investigate whether they can be used as biomarkers for the early detection of dysplasia. The expression of intestinal stem cell (ISC) markers was measured by real-time polymerase chain reaction during CAC that was induced by azoxymethane and dextran sodium sulfate treatment. CBC stem cell markers increased continuously with tumor development, whereas a +4 cell expression profile was not present. CBC stem cell population was suppressed in the acute colitis and then expanded to repopulate the crypts during the regeneration period. Notably, RNA in situ hybridization revealed that all dysplasia and cancer samples showed increased expression of CBC stem cell markers in more than one-third of the tumor height, whereas regenerative glands had CBC stem cell markers confined to the lower one-third of the crypt. These results suggest that CBC stem cell markers could be a useful tool for the early detection of colitis-induced tumors.

 

Pages

  • 1
  • 2
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?