Xiao, C;Li, J;Xie, T;Chen, J;Zhang, S;Elaksher, SH;Jiang, F;Jiang, Y;Zhang, L;Zhang, W;Xiang, Y;Wu, Z;Zhao, S;Du, X;
PMID: 34188851 | DOI: 10.1002/ece3.7611
The mammalian Y chromosome offers a unique perspective on the male reproduction and paternal evolutionary histories. However, further understanding of the Y chromosome biology for most mammals is hindered by the lack of a Y chromosome assembly. This study presents an integrated in silico strategy for identifying and assembling the goat Y-linked scaffolds using existing data. A total of 11.5 Mb Y-linked sequences were clustered into 33 scaffolds, and 187 protein-coding genes were annotated. We also identified high abundance of repetitive elements. A 5.84 Mb subset was further ordered into an assembly with the evidence from the goat radiation hybrid map (RH map). The existing whole-genome resequencing data of 96 goats (worldwide distribution) were utilized to exploit the paternal relationships among bezoars and domestic goats. Goat paternal lineages were clearly divided into two clades (Y1 and Y2), predating the goat domestication. Demographic history analyses indicated that maternal lineages experienced a bottleneck effect around 2,000 YBP (years before present), after which goats belonging to the A haplogroup spread worldwide from the Near East. As opposed to this, paternal lineages experienced a population decline around the 10,000 YBP. The evidence from the Y chromosome suggests that male goats were not affected by the A haplogroup worldwide transmission, which implies sexually unbalanced contribution to the goat trade and population expansion in post-Neolithic period.
Savulescu, AF;Bouilhol, E;Beaume, N;Nikolski, M;
PMID: 34765919 | DOI: 10.1016/j.isci.2021.103298
RNA subcellular localization has recently emerged as a widespread phenomenon, which may apply to the majority of RNAs. The two main sources of data for characterization of RNA localization are sequence features and microscopy images, such as obtained from single-molecule fluorescent in situ hybridization-based techniques. Although such imaging data are ideal for characterization of RNA distribution, these techniques remain costly, time-consuming, and technically challenging. Given these limitations, imaging data exist only for a limited number of RNAs. We argue that the field of RNA localization would greatly benefit from complementary techniques able to characterize location of RNA. Here we discuss the importance of RNA localization and the current methodology in the field, followed by an introduction on prediction of location of molecules. We then suggest a machine learning approach based on the integration between imaging localization data and sequence-based data to assist in characterization of RNA localization on a transcriptome level.
Ma, L;Du, Y;Hui, Y;Li, N;Fan, B;Zhang, X;Li, X;Hong, W;Wu, Z;Zhang, S;Zhou, S;Xu, X;Zhou, Z;Jiang, C;Liu, L;Zhang, X;
PMID: 34558085 | DOI: 10.15252/embj.2020107277
The dorsal and ventral human telencephalons contain different neuronal subtypes, including glutamatergic, GABAergic, and cholinergic neurons, and how these neurons are generated during early development is not well understood. Using scRNA-seq and stringent validations, we reveal here a developmental roadmap for human telencephalic neurons. Both dorsal and ventral telencephalic radial glial cells (RGs) differentiate into neurons via dividing intermediate progenitor cells (IPCs_div) and early postmitotic neuroblasts (eNBs). The transcription factor ASCL1 plays a key role in promoting fate transition from RGs to IPCs_div in both regions. RGs from the regionalized neuroectoderm show heterogeneity, with restricted glutamatergic, GABAergic, and cholinergic differentiation potencies. During neurogenesis, IPCs_div gradually exit the cell cycle and branch into sister eNBs to generate distinct neuronal subtypes. Our findings highlight a general RGs-IPCs_div-eNBs developmental scheme for human telencephalic progenitors and support that the major neuronal fates of human telencephalon are predetermined during dorsoventral regionalization with neuronal diversity being further shaped during neurogenesis and neural circuit integration.
Towards Personalized Medicine: Non-Coding RNAs and Endometrial Cancer
Healthcare (Basel, Switzerland)
Cavaliere, AF;Perelli, F;Zaami, S;Piergentili, R;Mattei, A;Vizzielli, G;Scambia, G;Straface, G;Restaino, S;Signore, F;
PMID: 34442102 | DOI: 10.3390/healthcare9080965
Endometrial cancer (EC) is the most frequent female cancer associated with excellent prognosis if diagnosed at an early stage. The risk factors on which clinical staging is based are constantly updated and genetic and epigenetic characteristics have recently been emerging as prognostic markers. The evidence shows that non-coding RNAs (ncRNAs) play a fundamental role in various biological processes associated with the pathogenesis of EC and many of them also have a prognosis prediction function, of remarkable importance in defining the therapeutic and surveillance path of EC patients. Personalized medicine focuses on the continuous updating of risk factors that are identifiable early during the EC staging to tailor treatments to patients. This review aims to show a summary of the current classification systems and to encourage the integration of various risk factors, introducing the prognostic role of non-coding RNAs, to avoid aggressive therapies where not necessary and to treat and strictly monitor subjects at greater risk of relapse.
Massive Perivillous Fibrin Deposition and Chronic Histiocytic Intervillositis a Complication of SARS-CoV-2 Infection
Pediatric and developmental pathology : the official journal of the Society for Pediatric Pathology and the Paediatric Pathology Society
Marton, T;Hargitai, B;Hunter, K;Pugh, M;Murray, P;
PMID: 34082613 | DOI: 10.1177/10935266211020723
An emerging complication of COVID-19 (SARS-CoV-2) infection is reported. A 23-year-old patient presented with high temperature and reduced fetal movements at 25 + 5/40 weeks of gestation. RT-PCR proved maternal COVID-19 infection. Ultrasound examination confirmed intrauterine death. Placenta histology showed necrosis of the villous trophoblast, associated with Chronic Histiocytic Intervillositis (CHI) and Massive Perivillous Fibrin Deposition (MPFD) with up to 90% - of the intervillous spaces being involved. Immunohistochemistry showed CD68 positive histiocytes in the intervillous spaces and the villous trophoblast was positive for the COVID-19 spike protein. RNA scope signal was indicative of the presence of the viral genome and active viral replication in the villous trophoblastic cells, respectively. MPFD is a gradually developing end-stage disease with various etiology, including autoimmune and alloimmune maternal response to antigens expressed at the feto-maternal interface and frequently accompanies chronic alloimmune villitis or histiocytic intervillositis. Covid-19 infection is associated with similar pattern of histological changes of the placenta leading to placental insufficiency and fetal death. This case report supports maternal- fetal vertical transmission of SARS-CoV-2 virus leading to placental insufficiency and fetal demise. MPFD and CHI appear to be the typical placental histology for SARS-CoV-2 virus infection associated fetal demise.
Thyroid-Like Cholangiocarcinoma: Histopathological, Immunohistochemical, In-Situ Hybridization and Molecular Studies on an Uncommon Emerging Entity
International journal of surgical pathology
Hissong, E;Chiu, K;Park, H;Solomon, J;Song, W;Jessurun, J;
PMID: 33939475 | DOI: 10.1177/10668969211013906
Thyroid-like cholangiocarcinoma is a very uncommon variant of peripheral-type cholangiocarcinoma. To date, only 4 prior cases have been reported. The molecular features of this tumor have not been described. We report a case of a 60-year-old woman with a tumor that evolved over a period of 10 years. A left hepatectomy specimen showed an 11 cm tumor that on histology exhibited areas reminiscent of a thyroid tumor with follicular and insular features which were positive on immunohistochemistry for cytokeratin 7 and in-situ hybridization for albumin. A detailed molecular analysis failed to show mutations common to cholangiocarcinomas but revealed frameshift mutations in 2 chromatin-remodeling genes, CREBBP and KMNT2A. This case confirms that thyroid-like cholangiocarcinoma is a histologic variant of this tumor that is associated with relatively low growth. As most cholangiocarcinomas, it is diffusely positive for cytokeratin 7 and albumin by in-situ hybridization. Given its rarity, the molecular alterations in this specific histologic subtype remain to be fully elucidated.
Single-cell RNA sequencing to study vascular diversity and function
Current opinion in hematology
Ma, F;Hernandez, GE;Romay, M;Iruela-Arispe, ML;
PMID: 33714967 | DOI: 10.1097/MOH.0000000000000651
Single-cell RNA sequencing (scRNA-seq) can capture the transcriptional profile of thousands of individual cells concurrently from complex tissues and with remarkable resolution. Either with the goal of seeking information about distinct cell subtypes or responses to a stimulus, the approach has provided robust information and promoted impressive advances in cardiovascular research. The goal of this review is to highlight strategies and approaches to leverage this technology and bypass potential caveats related to evaluation of the vascular cells. As the most recent technological development, details associated with experimental strategies, analysis, and interpretation of scRNA-seq data are still being discussed and scrutinized by investigators across the vascular field. Compilation of this information is valuable for those using the technology but particularly important to those about to start utilizing scRNA-seq to seek transcriptome information of vascular cells. As our field progresses to catalog transcriptomes from distinct vascular beds, it is undeniable that scRNA-seq technology is here to stay. Sharing approaches to improve the quality of cell dissociation procedures, analysis, and a consensus of best practices is critical as information from this powerful experimental platform continues to emerge.
Single-cell transcriptomics of human embryos identifies multiple sympathoblast lineages with potential implications for neuroblastoma origin
Kameneva, P;Artemov, AV;Kastriti, ME;Faure, L;Olsen, TK;Otte, J;Erickson, A;Semsch, B;Andersson, ER;Ratz, M;Frisén, J;Tischler, AS;de Krijger, RR;Bouderlique, T;Akkuratova, N;Vorontsova, M;Gusev, O;Fried, K;Sundström, E;Mei, S;Kogner, P;Baryawno, N;Kharchenko, PV;Adameyko, I;
PMID: 33833454 | DOI: 10.1038/s41588-021-00818-x
Characterization of the progression of cellular states during human embryogenesis can provide insights into the origin of pediatric diseases. We examined the transcriptional states of neural crest- and mesoderm-derived lineages differentiating into adrenal glands, kidneys, endothelium and hematopoietic tissue between post-conception weeks 6 and 14 of human development. Our results reveal transitions connecting the intermediate mesoderm and progenitors of organ primordia, the hematopoietic system and endothelial subtypes. Unexpectedly, by using a combination of single-cell transcriptomics and lineage tracing, we found that intra-adrenal sympathoblasts at that stage are directly derived from nerve-associated Schwann cell precursors, similarly to local chromaffin cells, whereas the majority of extra-adrenal sympathoblasts arise from the migratory neural crest. In humans, this process persists during several weeks of development within the large intra-adrenal ganglia-like structures, which may also serve as reservoirs of originating cells in neuroblastoma.
Specific populations of basal ganglia output neurons target distinct brain stem areas while collateralizing throughout the diencephalon
McElvain, LE;Chen, Y;Moore, JD;Brigidi, GS;Bloodgood, BL;Lim, BK;Costa, RM;Kleinfeld, D;
PMID: 33823137 | DOI: 10.1016/j.neuron.2021.03.017
Basal ganglia play a central role in regulating behavior, but the organization of their outputs to other brain areas is incompletely understood. We investigate the largest output nucleus, the substantia nigra pars reticulata (SNr), and delineate the organization and physiology of its projection populations in mice. Using genetically targeted viral tracing and whole-brain anatomical analysis, we identify over 40 SNr targets that encompass a roughly 50-fold range of axonal densities. Retrograde tracing from the volumetrically largest targets indicates that the SNr contains segregated subpopulations that differentially project to functionally distinct brain stem regions. These subpopulations are electrophysiologically specialized and topographically organized and collateralize to common diencephalon targets, including the motor and intralaminar thalamus as well as the pedunculopontine nucleus and the midbrain reticular formation. These findings establish that SNr signaling is organized as dense, parallel outputs to specific brain stem targets concurrent with extensive collateral branches that encompass the majority of SNr axonal boutons.
Identifying and characterizing virus-encoded circular RNAs
Methods (San Diego, Calif.)
Tagawa, T;Kopardé, VN;Ziegelbauer, JM;
PMID: 33713796 | DOI: 10.1016/j.ymeth.2021.03.004
Circular forms of RNA were first discovered in plant viroids and later found in a variety of animal viruses. These circular RNAs lack free 5' and 3' ends, granting protection from exonucleases. This review is focused on the methods that are used to investigate virus-encoded circular RNAs. Using DNA viruses that are prevalent among human as examples, we begin with features of circular RNAs and the unique methods to enrich for circular RNAs. Next, we discuss the computational methods for RNA-sequencing analysis to discover new virus-encoded circular RNAs. Many strategies are similar to analyzing cellular RNAs, but some unique aspects of virus-encoded circular RNAs that are likely due to highly packed viral genomes and non-canonical use of splicing machinery, are described herein. We illustrate the various methods of validating expression of specific virus-encoded circular RNAs. Finally, we discuss novel methods to study functions of circular RNAs and the current technical challenges that remain for investigating virus-encoded circular RNAs.
Neuron-specific spinal cord translatomes reveal a neuropeptide code for mouse dorsal horn excitatory neurons
Das Gupta, RR;Scheurer, L;Pelczar, P;Wildner, H;Zeilhofer, HU;
PMID: 33664406 | DOI: 10.1038/s41598-021-84667-y
The spinal dorsal horn harbors a sophisticated and heterogeneous network of excitatory and inhibitory neurons that process peripheral signals encoding different sensory modalities. Although it has long been recognized that this network is crucial both for the separation and the integration of sensory signals of different modalities, a systematic unbiased approach to the use of specific neuromodulatory systems is still missing. Here, we have used the translating ribosome affinity purification (TRAP) technique to map the translatomes of excitatory glutamatergic (vGluT2+) and inhibitory GABA and/or glycinergic (vGAT+ or Gad67+) neurons of the mouse spinal cord. Our analyses demonstrate that inhibitory and excitatory neurons are not only set apart, as expected, by the expression of genes related to the production, release or re-uptake of their principal neurotransmitters and by genes encoding for transcription factors, but also by a differential engagement of neuromodulator, especially neuropeptide, signaling pathways. Subsequent multiplex in situ hybridization revealed eleven neuropeptide genes that are strongly enriched in excitatory dorsal horn neurons and display largely non-overlapping expression patterns closely adhering to the laminar and presumably also functional organization of the spinal cord grey matter.
Differential regulation of β-catenin-mediated transcription via N- and C-terminal co-factors governs identity of murine intestinal epithelial stem cells
Borrelli, C;Valenta, T;Handler, K;Vélez, K;Gurtner, A;Moro, G;Lafzi, A;Roditi, LV;Hausmann, G;Arnold, IC;Moor, AE;Basler, K;
PMID: 33649334 | DOI: 10.1038/s41467-021-21591-9
The homeostasis of the gut epithelium relies upon continuous renewal and proliferation of crypt-resident intestinal epithelial stem cells (IESCs). Wnt/β-catenin signaling is required for IESC maintenance, however, it remains unclear how this pathway selectively governs the identity and proliferative decisions of IESCs. Here, we took advantage of knock-in mice harboring transgenic β-catenin alleles with mutations that specifically impair the recruitment of N- or C-terminal transcriptional co-factors. We show that C-terminally-recruited transcriptional co-factors of β-catenin act as all-or-nothing regulators of Wnt-target gene expression. Blocking their interactions with β-catenin rapidly induces loss of IESCs and intestinal homeostasis. Conversely, N-terminally recruited co-factors fine-tune β-catenin's transcriptional output to ensure proper self-renewal and proliferative behaviour of IESCs. Impairment of N-terminal interactions triggers transient hyperproliferation of IESCs, eventually resulting in exhaustion of the self-renewing stem cell pool. IESC mis-differentiation, accompanied by unfolded protein response stress and immune infiltration, results in a process resembling aberrant "villisation" of intestinal crypts. Our data suggest that IESC-specific Wnt/β-catenin output requires selective modulation of gene expression by transcriptional co-factors.