Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (1522)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • (-) Remove TBD filter TBD (1413)
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • (-) Remove TH filter TH (63)
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • (-) Remove PVALB filter PVALB (47)
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope (227) Apply RNAscope filter
  • TBD (149) Apply TBD filter
  • RNAscope Multiplex Fluorescent Assay (73) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope Fluorescent Multiplex Assay (54) Apply RNAscope Fluorescent Multiplex Assay filter
  • Basescope (10) Apply Basescope filter
  • RNAscope HiPlex v2 assay (10) Apply RNAscope HiPlex v2 assay filter
  • RNAscope 2.5 HD Brown Assay (9) Apply RNAscope 2.5 HD Brown Assay filter
  • DNAscope HD Duplex Reagent Kit (8) Apply DNAscope HD Duplex Reagent Kit filter
  • RNAscope 2.5 HD Duplex (8) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope Multiplex Fluorescent v2 (8) Apply RNAscope Multiplex Fluorescent v2 filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (7) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope 2.5 HD Red assay (4) Apply RNAscope 2.5 HD Red assay filter
  • BASEscope Assay RED (2) Apply BASEscope Assay RED filter
  • RNAscope 2.0 Assay (2) Apply RNAscope 2.0 Assay filter
  • BaseScope Duplex Assay (1) Apply BaseScope Duplex Assay filter
  • DNAscope Duplex Assay (1) Apply DNAscope Duplex Assay filter
  • miRNAscope (1) Apply miRNAscope filter
  • RNAscope 2.5 HD Assay (1) Apply RNAscope 2.5 HD Assay filter
  • RNAscope 2.5 LS Assay (1) Apply RNAscope 2.5 LS Assay filter
  • RNAScope HiPlex assay (1) Apply RNAScope HiPlex assay filter
  • RNAscope HiPlex Image Registration Software (1) Apply RNAscope HiPlex Image Registration Software filter
  • RNAscope HiPlex12 Reagents Kit (1) Apply RNAscope HiPlex12 Reagents Kit filter

Research area

  • Neuroscience (237) Apply Neuroscience filter
  • Cancer (111) Apply Cancer filter
  • Development (58) Apply Development filter
  • Other: Methods (45) Apply Other: Methods filter
  • Inflammation (32) Apply Inflammation filter
  • Infectious (18) Apply Infectious filter
  • HIV (15) Apply HIV filter
  • Pain (14) Apply Pain filter
  • Stem Cells (13) Apply Stem Cells filter
  • HPV (12) Apply HPV filter
  • Other: Neuromuscular Disorders (10) Apply Other: Neuromuscular Disorders filter
  • Other: Heart (9) Apply Other: Heart filter
  • Other: Lung (9) Apply Other: Lung filter
  • CGT (8) Apply CGT filter
  • Covid (8) Apply Covid filter
  • Other: Metabolism (8) Apply Other: Metabolism filter
  • Infectious Disease (7) Apply Infectious Disease filter
  • Metabolism (7) Apply Metabolism filter
  • Stem cell (7) Apply Stem cell filter
  • Immunotherapy (6) Apply Immunotherapy filter
  • Other: Reproduction (6) Apply Other: Reproduction filter
  • Stress (6) Apply Stress filter
  • Aging (5) Apply Aging filter
  • Endocrinology (5) Apply Endocrinology filter
  • LncRNAs (5) Apply LncRNAs filter
  • Obesity (5) Apply Obesity filter
  • Reproduction (5) Apply Reproduction filter
  • Transcriptomics (5) Apply Transcriptomics filter
  • Cystic Fibrosis (4) Apply Cystic Fibrosis filter
  • Heart (4) Apply Heart filter
  • Itch (4) Apply Itch filter
  • lncRNA (4) Apply lncRNA filter
  • Memory (4) Apply Memory filter
  • Other: Kidney (4) Apply Other: Kidney filter
  • Other: Skin (4) Apply Other: Skin filter
  • Psychiatry (4) Apply Psychiatry filter
  • Alzheimer's Disease (3) Apply Alzheimer's Disease filter
  • diabetes (3) Apply diabetes filter
  • Immunology (3) Apply Immunology filter
  • Kidney (3) Apply Kidney filter
  • Lung (3) Apply Lung filter
  • other: Aging (3) Apply other: Aging filter
  • Other: Eyes (3) Apply Other: Eyes filter
  • Other: Transcriptomics (3) Apply Other: Transcriptomics filter
  • Other: Zoological Disease (3) Apply Other: Zoological Disease filter
  • Parkinson's Disease (3) Apply Parkinson's Disease filter
  • Regeneration (3) Apply Regeneration filter
  • Reproductive Biology (3) Apply Reproductive Biology filter
  • Skin (3) Apply Skin filter
  • Tumor microenvironment (3) Apply Tumor microenvironment filter

Category

  • Publications (1522) Apply Publications filter
Myocardial Pathology in COVID-19-Associated Cardiac Injury: A Systematic Review

Diagnostics (Basel, Switzerland)

2021 Sep 08

Maiese, A;Frati, P;Del Duca, F;Santoro, P;Manetti, AC;La Russa, R;Di Paolo, M;Turillazzi, E;Fineschi, V;
PMID: 34573988 | DOI: 10.3390/diagnostics11091647

Coronavirus disease 2019 (COVID-19) can potentially affect all organs owing to the ubiquitous diffusion of the angiotensin-converting enzyme II (ACE2) receptor-binding protein. Indeed, the SARS-CoV-2 virus is capable of causing heart disease. This systematic review can offer a new perspective on the potential consequences of COVID-19 through an analysis of the current literature on cardiac involvement. This systematic review, conducted from March 2020 to July 2021, searched the current literature for postmortem findings in patients who were positive for SARS-CoV-2 by combining and meshing the terms "COVID-19", "postmortem", "autopsy", and "heart" in titles, abstracts, and keywords. The PubMed database was searched following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Sixteen papers met the inclusion criteria (case reports and series, original research, only English-written). A total of 209 patients were found (mean age (interquartile range (IQR)), 60.17 years (IQR, 54.75-70.75 years); 122 men (58.37%, ratio of men to women of 1:0.7%)). Each patient tested positive for SARS-CoV-2. Death was mainly the result of respiratory failure. The second most common cause of death was acute heart failure. Few patients specifically died of myocarditis. Variables such as pathological findings, immunohistochemical data, and previous clinical assessments were analyzed. Main cardiac pathological findings were cardiac dilatation, necrosis, lymphocytic infiltration of the myocardium, and small coronary vessel microthrombosis. Immunohistochemical analyses revealed an inflammatory state dominated by the constant presence of CD3+ and CD8+ cytotoxic lymphocytes and CD68+ macrophages. COVID-19 leads to a systemic inflammatory response and a constant prothrombotic state. The results of our systematic review suggest that SARS-CoV-2 was able to cause irreversible changes in several organs, including the heart; this is reflected by the increased cardiac risk in patients who survive COVID-19. Postmortem analysis (including autopsy, histologic, and immunohistochemical examination) is an indispensable tool to better understand pathological changes caused by emerging diseases such as COVID-19. Our results may provide more information on the involvement of the heart in COVID-19 patients.
Microthrombi As A Major Cause of Cardiac Injury in COVID-19: A Pathologic Study

Circulation

2021 Jan 22

Pellegrini, D;Kawakami, R;Guagliumi, G;Sakamoto, A;Kawai, K;Gianatti, A;Nasr, A;Kutys, R;Guo, L;Cornelissen, A;Faggi, L;Mori, M;Sato, Y;Pescetelli, I;Brivio, M;Romero, M;Virmani, R;Finn, AV;
PMID: 33480806 | DOI: 10.1161/CIRCULATIONAHA.120.051828

Background: Cardiac injury is common in hospitalized patients with COVID-19 and portends poorer prognosis. However, the mechanism and the type of myocardial damage associated with SARS-CoV-2 remain uncertain. Methods: We conducted a systematic pathologic analysis of 40 hearts from hospitalized patients dying of Coronavirus Disease 2019 (COVID-19) in Bergamo, Italy to determine the pathologic mechanisms of cardiac injury. We divided the hearts according to presence or absence of acute myocyte necrosis and then determined the underlying mechanisms of cardiac injury. Results: Of the 40 hearts examined, 14 (35%) had evidence of myocyte necrosis, predominantly of the left ventricle. As compared to subjects without necrosis, subjects with necrosis tended to be female, have chronic kidney disease, and shorter symptom onset to admission. The incidence of severe coronary artery disease (i.e., >75% cross sectional narrowing) was not significantly different between those with and without necrosis. 3/14 (21 .4%) subjects with myocyte necrosis showed evidence of acute myocardial infarction defined as ≥1 cm2 area of necrosis while 11/14 (78.6%) showed evidence of focal (> 20 necrotic myocytes with an area of ≥ 0.05 mm2 but <1 cm2) myocyte necrosis. Cardiac thrombi were present in 11/14 (78.6%) cases with necrosis, with 2/14 (14.2%) having epicardial coronary artery thrombi while 9/14 (64.3%) had microthrombi in myocardial capillaries, arterioles, and small muscular arteries. We compared cardiac microthrombi from COVID-19 positive autopsy cases to intramyocardial thromboemboli from COVID-19 cases as well as to aspirated thrombi obtained during primary percutaneous coronary intervention from uninfected and COVID-19 infected patients presenting with ST-segment elevation myocardial infarction (STEMI). Microthrombi had significantly greater fibrin and terminal complement C5b-9 immunostaining as compared to intramyocardial thromboemboli from COVID-19 negative subjects and to aspirated thrombi. There were no significant differences between the constituents of thrombi aspirated from COVID-19 positive and negative STEMI patients. Conclusions: The most common pathologic cause of myocyte necrosis was microthrombi. Microthrombi were different in composition as compared to intramyocardial thromboemboli from COVID-19 negative subjects and to coronary thrombi retrieved from COVID-19 positive and negative STEMI patients. Tailored anti-thrombotic strategies may be useful to counteract the cardiac effects of COVID-19 infection.
[Single-cell transcriptome analysis reveals development atlas of mouse molar pulp cells]

Zhonghua kou qiang yi xue za zhi = Zhonghua kouqiang yixue zazhi = Chinese journal of stomatology

2023 May 09

Wen, Q;Ren, HH;Zhao, YM;Yan, WJ;Ge, LH;Chen, XX;
PMID: 37082848 | DOI: 10.3760/cma.j.cn112144-20220901-00471

Objective: Single-cell RNA sequencing (scRNA-seq) was used to analyze the developing mouse molars, in order to construct a spatiotemporal development atlas of pulp cells, and further to reveal the developmental process and regulatory mechanism of tooth development. Methods: Ten mandibular first molars from C57BL/6 mice in postnatal day (PN) 0 and 3 were respectively dissected and digested to obtain single-cell suspensions. scRNA-seq was performed on 10× Genomics platform. PN 7 mouse molar scRNA-seq data were obtained from our previous study. PN 0, 3, and 7 scRNA-seq data were integrated for following analysis. The initial quality control, mapping and single cell expression matrix construction were performed by Cell Ranger. Quality control, standardization, dimensional reduction and cluster analysis were performed by using Seurat. Monocle was used to generate the pseudotime trajectory. Scillus was used to perform gene ontology analysis. In order to detect the spatiotemporal change of different population of pulp cells, the marker genes of each cluster were demonstrated by RNAscope in situ hybridization. Results: There were twenty-six cell clusters within mouse molars, which were identified as eight different cell types, including dental pulp cells, dental follicle cells, epithelial cells, immune cells, endothelial cells, perivascular cells, glial cells and erythrocytes. We further re-clustered and analyzed dental pulp cells. Cluster 0 were mature pulp cells, which located at the upper portion of crown. The main functions of cluster 0 were osteogenesis and extracellular structure organization. Cluster 1 were apical papilla cells, which located at the apical part of roots, whose main functions were extracellular structure organization and organ development. Cluster 2 were cycling cells, which were actively proliferated, resided in the lower portion of the crown. Cluster 3 and 4 were preodontoblasts and odontoblasts, respectively. Their functions were closely related to biomineralization. The proportion of mature pulp cells increased with the development process, while the proportion of cycling cells and odontoblast lineage decreased. According to the expression pattern of marker genes of each cluster, we constructed a cell atlas of dental pulp. Pseudotime trajectory analysis found there were two development trajectories within dental pulp. They both started from SPARC related modular calcium binding 2 (Smoc2)+ dental papilla cells, then went through DNA topoisomerase Ⅱ alpha (Top2a)+ cycling cells, and finally divided into coxsackie virus and adenovirus receptor (Cxadr)+ mature pulp cells or dentin sialophosphoprotein (Dspp)+ odontoblasts two lineages. Conclusions: scRNA-seq could fully discover the intercellular heterogeneity of cells on transcriptome level, which provides a powerful tool to study the process and regulatory mechanism of organ development.
Neurochemically and hodologically distinct ascending VGLUT3 versus serotonin subsystems comprise the r2-Pet1 median raphe

The Journal of neuroscience : the official journal of the Society for Neuroscience

2021 Feb 05

Senft, RA;Freret, ME;Sturrock, N;Dymecki, SM;
PMID: 33547164 | DOI: 10.1523/JNEUROSCI.1667-20.2021

Brainstem median raphe (MR) neurons expressing the serotonergic regulator gene Pet1 send collateralized projections to forebrain regions to modulate affective, memory-related, and circadian behaviors. Some Pet1 neurons express a surprisingly incomplete battery of serotonin pathway genes, with somata lacking transcripts for tryptophan hydroxylase 2 (Tph2) encoding the rate-limiting enzyme for serotonin (5-hydroxytryptamine, 5-HT) synthesis, but abundant for vesicular glutamate transporter 3 (Vglut3) encoding a synaptic-vesicle associated glutamate transporter. Genetic fate maps show these non-classical, putatively glutamatergic Pet1 neurons in the MR arise embryonically from the same progenitor cell compartment - hindbrain rhombomere 2 (r2) - as serotonergic TPH2+ MR Pet1 neurons. Well established is the distribution of efferents en masse from r2-derived, Pet1-neurons; unknown is the relationship between these efferent targets and the specific constituent source-neuron subgroups identified as r2-Pet1Tph2-high versus r2-Pet1Vglut3-high Using male and female mice, we found r2-Pet1 axonal boutons segregated anatomically largely by serotonin+ versus VGLUT3+ identity. The former present in the suprachiasmatic nucleus, paraventricular nucleus of the thalamus, and olfactory bulb; the latter are found in the hippocampus, cortex, and septum. Thus r2-Pet1Tph2-high and r2-Pet1Vglut3-high neurons likely regulate distinct brain regions and behaviors. Some r2-Pet1 boutons encased interneuron somata, forming specialized presynaptic "baskets" of VGLUT3+ or VGLUT3+/5-HT+ identity; this suggests that some r2-Pet1Vglut3-high neurons may regulate local networks, perhaps with differential kinetics via glutamate versus serotonin signaling. Fibers from other Pet1 neurons (non-r2-derived) were observed in many of these same baskets, suggesting multifaceted regulation. Collectively, these findings inform brain organization and new circuit nodes for therapeutic considerations.Significance statementOur findings match axonal bouton neurochemical identity with distant cell bodies in the brainstem raphe. The results are significant because they suggest that disparate neuronal subsystems derive from Pet1+ precursor cells of the embryonic progenitor compartment rhombomere 2 (r2). Of these r2-Pet1 neuronal subsystems, one appears largely serotonergic, as expected given expression of the serotonergic regulator PET1, and projects to the olfactory bulb, thalamus, and suprachiasmatic nucleus. Another expresses VGLUT3, suggesting principally glutamate transmission, and projects to the hippocampus, septum, and cortex. Some r2-Pet1 boutons-those that are VGLUT3+ or VGLUT3+/5-HT+ co-positive-comprise "baskets" encasing interneurons, suggesting they control local networks perhaps with differential kinetics via glutamate versus serotonin signaling. Results inform brain organization and circuit nodes for therapeutic consideration.
Research briefing

nature.com

2023 Mar 01

Jensen, BEO;Kobbe, G;
| DOI: 10.1038/s41591-023-02215-9

We describe a 53-year-old man with HIV-1 who received allogeneic CCR5Δ32/Δ32 hematopoietic stem cell transplantation (HSCT) in 2013 to treat acute myeloid leukemia. Four years after analytic treatment interruption (ATI), the absence of viral rebound and the lack of immunological correlates of HIV-1 antigen persistence provide convincing evidence for HIV-1 cure.
Th1-dominant cytokine responses in kidney patients after COVID-19 vaccination are associated with poor humoral responses

NPJ vaccines

2023 May 17

den Hartog, Y;Malahe, SRK;Rietdijk, WJR;Dieterich, M;Gommers, L;Geers, D;Bogers, S;van Baarle, D;Diavatopoulos, DA;Messchendorp, AL;van der Molen, RG;Remmerswaal, EBM;Bemelman, FJ;Gansevoort, RT;Hilbrands, LB;Sanders, JS;GeurtsvanKessel, CH;Kho, MML;Reinders, MEJ;de Vries, RD;Baan, CC;RECOVAC Consortium, ;
PMID: 37198189 | DOI: 10.1038/s41541-023-00664-4

Cytokines are regulators of the immune response against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). However, the contribution of cytokine-secreting CD4+ and CD8+ memory T cells to the SARS-CoV-2-specific humoral immune response in immunocompromised kidney patients is unknown. Here, we profiled 12 cytokines after stimulation of whole blood obtained 28 days post second 100 μg mRNA-1273 vaccination with peptides covering the SARS-CoV-2 spike (S)-protein from patients with chronic kidney disease (CKD) stage 4/5, on dialysis, kidney transplant recipients (KTR), and healthy controls. Unsupervised hierarchical clustering analysis revealed two distinct vaccine-induced cytokine profiles. The first profile was characterized by high levels of T-helper (Th)1 (IL-2, TNF-α, and IFN-γ) and Th2 (IL-4, IL-5, IL-13) cytokines, and low levels of Th17 (IL-17A, IL-22) and Th9 (IL-9) cytokines. This cluster was dominated by patients with CKD, on dialysis, and healthy controls. In contrast, the second cytokine profile contained predominantly KTRs producing mainly Th1 cytokines upon re-stimulation, with lower levels or absence of Th2, Th17, and Th9 cytokines. Multivariate analyses indicated that a balanced memory T cell response with the production of Th1 and Th2 cytokines was associated with high levels of S1-specific binding and neutralizing antibodies mainly at 6 months after second vaccination. In conclusion, seroconversion is associated with the balanced production of cytokines by memory T cells. This emphasizes the importance of measuring multiple T cell cytokines to understand their influence on seroconversion and potentially gain more information about the protection induced by vaccine-induced memory T cells.
Single-cell transcriptomics reveals conserved cell identities and fibrogenic phenotypes in zebrafish and human liver

Hepatology communications

2022 Mar 22

Morrison, JK;DeRossi, C;Alter, IL;Nayar, S;Giri, M;Zhang, C;Cho, JH;Chu, J;
PMID: 35315595 | DOI: 10.1002/hep4.1930

The mechanisms underlying liver fibrosis are multifaceted and remain elusive with no approved antifibrotic treatments available. The adult zebrafish has been an underutilized tool to study liver fibrosis. We aimed to characterize the single-cell transcriptome of the adult zebrafish liver to determine its utility as a model for studying liver fibrosis. We used single-cell RNA sequencing (scRNA-seq) of adult zebrafish liver to study the molecular and cellular dynamics at a single-cell level. We performed a comparative analysis to scRNA-seq of human liver with a focus on hepatic stellate cells (HSCs), the driver cells in liver fibrosis. scRNA-seq reveals transcriptionally unique populations of hepatic cell types that comprise the zebrafish liver. Joint clustering with human liver scRNA-seq data demonstrates high conservation of transcriptional profiles and human marker genes in zebrafish. Human and zebrafish HSCs show conservation of transcriptional profiles, and we uncover collectin subfamily member 11 (colec11) as a novel, conserved marker for zebrafish HSCs. To demonstrate the power of scRNA-seq to study liver fibrosis using zebrafish, we performed scRNA-seq on our zebrafish model of a pediatric liver disease with mutation in mannose phosphate isomerase (MPI) and characteristic early liver fibrosis. We found fibrosis signaling pathways and upstream regulators conserved across MPI-depleted zebrafish and human HSCs. CellPhoneDB analysis of zebrafish transcriptome identified neuropilin 1 as a potential driver of liver fibrosis. Conclusion: This study establishes the first scRNA-seq atlas of the adult zebrafish liver, highlights the high degree of similarity to human liver, and strengthens its value as a model to study liver fibrosis.
Single-cell biology uncovers apoptotic cell death and its spatial organization as a potential modifier of tumor diversity in hepatocellular carcinoma

Hepatology (Baltimore, Md.)

2022 Jan 16

Khatib, SA;Ma, L;Dang, H;Forgues, M;Chung, JY;Ylaya, K;Hewitt, SM;Chaisaingmongkol, J;Rucchirawat, M;Wang, XW;
PMID: 35034369 | DOI: 10.1002/hep.32345

Hepatocellular carcinoma (HCC) is a highly aggressive and heterogeneous cancer type with limited treatment options. Identifying drivers of tumor heterogeneity may lead to better therapeutic options and favorable patient outcomes. Here, we aimed to investigate whether apoptotic cell death and its spatial architecture is linked to tumor molecular heterogeneity using single-cell in situ hybridization analysis.We analyzed 254 tumor samples from two HCC cohorts using tissue microarrays. We developed a mathematical model to quantify cellular diversity among HCC samples using two tumor markers, CDKN3 and PRC1 as surrogates for heterogeneity and CASP3 as an apoptotic cell death marker. We further explored the impact of potential dying-cell hubs on tumor cell diversity and patient outcome by density contour mapping and spatial proximity analysis. We also developed a selectively controlled in vitro model of cell death using CRISPR/Cas9 to determine therapy response and growth under hypoxic conditions. We found that increasing levels of CASP3+ tumor cells are associated with higher tumor diversity. Interestingly, we discovered regions of densely populated CASP3+ , that we refer to as CASP3+ cell islands, in which the nearby cellular heterogeneity was found to be the greatest compared to cells further away from these islands and that this phenomenon was associated with survival. Additionally, cell culture experiments revealed higher levels of cell death, accompanied by increased CASP3 expression, led to greater therapy resistance and growth under hypoxia.These results are consistent with the hypothesis that increased apoptotic cell death may lead to greater tumor heterogeneity and thus worse patient outcomes.This article is protected by
Large-scale integration of single-cell transcriptomic data captures transitional progenitor states in mouse skeletal muscle regeneration

Communications biology

2021 Nov 12

McKellar, DW;Walter, LD;Song, LT;Mantri, M;Wang, MFZ;De Vlaminck, I;Cosgrove, BD;
PMID: 34773081 | DOI: 10.1038/s42003-021-02810-x

Skeletal muscle repair is driven by the coordinated self-renewal and fusion of myogenic stem and progenitor cells. Single-cell gene expression analyses of myogenesis have been hampered by the poor sampling of rare and transient cell states that are critical for muscle repair, and do not inform the spatial context that is important for myogenic differentiation. Here, we demonstrate how large-scale integration of single-cell and spatial transcriptomic data can overcome these limitations. We created a single-cell transcriptomic dataset of mouse skeletal muscle by integration, consensus annotation, and analysis of 23 newly collected scRNAseq datasets and 88 publicly available single-cell (scRNAseq) and single-nucleus (snRNAseq) RNA-sequencing datasets. The resulting dataset includes more than 365,000 cells and spans a wide range of ages, injury, and repair conditions. Together, these data enabled identification of the predominant cell types in skeletal muscle, and resolved cell subtypes, including endothelial subtypes distinguished by vessel-type of origin, fibro-adipogenic progenitors defined by functional roles, and many distinct immune populations. The representation of different experimental conditions and the depth of transcriptome coverage enabled robust profiling of sparsely expressed genes. We built a densely sampled transcriptomic model of myogenesis, from stem cell quiescence to myofiber maturation, and identified rare, transitional states of progenitor commitment and fusion that are poorly represented in individual datasets. We performed spatial RNA sequencing of mouse muscle at three time points after injury and used the integrated dataset as a reference to achieve a high-resolution, local deconvolution of cell subtypes. We also used the integrated dataset to explore ligand-receptor co-expression patterns and identify dynamic cell-cell interactions in muscle injury response. We provide a public web tool to enable interactive exploration and visualization of the data. Our work supports the utility of large-scale integration of single-cell transcriptomic data as a tool for biological discovery.
Human papillomavirus testing in metastatic squamous cell carcinoma of the neck with unknown primary using PCR on fine-needle aspiration smears: a prospective clinical study

European archives of oto-rhino-laryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery

2021 Oct 24

Channir, HI;Lomholt, AF;Gerds, TA;Charabi, BW;Kiss, K;von Buchwald, C;
PMID: 34689237 | DOI: 10.1007/s00405-021-07133-5

Squamous cell carcinoma metastasis of the head and neck with unknown primary tumor (CUP) comprises a diagnostic challenge. Human papillomavirus (HPV) testing on cytologic specimens is gaining increasing focus as this may facilitate an early diagnosis of HPV-induced oropharyngeal carcinoma. This study aimed to prospectively assess PCR-based HPV-DNA testing on FNA smears in a clinical setting.Patients referred to a tertiary Head and Neck Cancer Center with suspected CUP were included from November 2016 to November 2018. Scraped cell material from FNA smears was analyzed for HPV-DNA with PCR using general primers (GP5 + /GP6 +) and correlated with the origin and histology of the primary tumor (oropharynx vs. outside oropharynx or benign tumor). The turn-around time reflecting the workflow for HPV-DNA testing by PCR was also calculated.A total of 93 patients were enrolled in the study. The sensitivity and specificity were 86.7% [95% CI 75.4-94.1%] and 92.0% [95% CI 74.0-99.0%], and the positive and negative predictive values were 96.3% [95% CI 87.3-99.0%] and 74.2% [95% CI 59.9-84.7%], respectively. The turn-around time for HPV testing was a mean four calendar days.HPV-DNA testing on FNA smears can be performed within a reasonable timeframe and can guide for the detection of an HPV-positive oropharyngeal primary tumor in the clinical setting for patients presenting with CUP of the head and neck.
Analysis of Factors Related to Lymph Node Metastasis in Early-Stage Type 1 Endometrial Cancer: Verifying the Clinical Value of Positive Threshold of the Immunohistochemical Parameter Ki67

Cancer management and research

2021 Aug 10

Jiang, P;Yuan, R;
PMID: 34413681 | DOI: 10.2147/CMAR.S316211

Lymph node metastasis (LNM) is an important reference indicator for the prognosis of endometrial cancer (EC). Even in patients with early low-risk EC, many people still have LNM. The purpose of this study was to investigate the related factors influencing LNM in early-stage EC and determine the optimal positive threshold of immunohistochemical parameter Ki67 for predicting LNM, providing auxiliary reference indicators for clinical diagnosis and treatment.The clinicopathological data of 651 patients with "apparent" early-stage EC who underwent standard surgical treatment were included. Univariate and multivariate logistics regression were used to analyze the correlation between each clinicopathological factor and LNM. Receiver operating characteristic curve (ROC curve) and Youden index were used to determine the optimal positive threshold of Ki67 for predicting LNM. Finally, correlation between Ki67 and various clinicopathological factors was analyzed, and the predictive value of each prognostic factor was compared.Multivariate analysis found that histologic grade (P=0.023), lymphatic vessel space invasion (LVSI) (P < 0.001), serological index Ca125 (P=0.002), immunohistochemical parameter Ki67 (P < 0.001), ER (P < 0.001) and P53 (P=0.001) were independent prognostic factors of LNM. ROC curve and Youden index showed that the optimal positive thresholds of Ki67 to predict LNM were 40%. Based on this, ROC curve showed that the area under the curve (AUC) of Ki67 (AUC=0.714) was larger than other single predictors, and Ki67 combined with other predictors can significantly increase the AUC value (AUC= 0.847 and 0.868, respectively).Ki67 was an important predictor for predicting the LNM in early-stage EC and taking a positive percentage of about 40% can be used as the positive threshold of the immunohistochemical parameter Ki67. On this basis, Ki67 combined with other predictive indicators can significantly improve prediction performance and can be used for segmentally predicting LNM of early-stage EC.
Central Nervous System (CNS) Viral Seeding by Mature Monocytes and Potential Therapies To Reduce CNS Viral Reservoirs in the cART Era

mBio

2021 Mar 16

León-Rivera, R;Veenstra, M;Donoso, M;Tell, E;Eugenin, EA;Morgello, S;Berman, JW;
PMID: 33727362 | DOI: 10.1128/mBio.03633-20

The human immunodeficiency virus (HIV) enters the central nervous system (CNS) within a few days after primary infection, establishing viral reservoirs that persist even with combined antiretroviral therapy (cART). We show that monocytes from people living with HIV (PLWH) on suppressive cART harboring integrated HIV, viral mRNA, and/or viral proteins preferentially transmigrate across the blood-brain barrier (BBB) to CCL2 and are significantly enriched post-transmigration, and even more highly enriched posttransmigration than T cells with similar properties. Using HIV-infected ART-treated mature monocytes cultured in vitro, we recapitulate these findings and demonstrate that HIV+ CD14+ CD16+ ART-treated monocytes also preferentially transmigrate. Cenicriviroc and anti-JAM-A and anti-ALCAM antibodies significantly and preferentially reduce/block transmigration of HIV+ CD14+ CD16+ ART-treated monocytes. These findings highlight the importance of monocytes in CNS HIV reservoirs and suggest targets to eliminate their formation and reseeding.IMPORTANCE We characterized mechanisms of CNS viral reservoir establishment/replenishment using peripheral blood mononuclear cells (PBMC) of PLWH on cART and propose therapeutic targets to reduce/block selective entry of cells harboring HIV (HIV+) into the CNS. Using DNA/RNAscope, we show that CD14+ CD16+ monocytes with integrated HIV, transcriptionally active, and/or with active viral replication from PBMC of PLWH prescribed cART and virally suppressed, selectively transmigrate across a human BBB model. This is the first study to our knowledge demonstrating that monocytes from PLWH with HIV disease for approximately 22 years and with long-term documented suppression can still carry virus into the CNS that has potential to be reactivated and infectious. This selective entry into the CNS-and likely other tissues-indicates a mechanism of reservoir formation/reseeding in the cART era. Using blocking studies, we propose CCR2, JAM-A, and ALCAM as targets on HIV+ CD14+ CD16+ monocytes to reduce and/or prevent CNS reservoir replenishment and to treat HAND and other HIV-associated comorbidities.

Pages

  • « first
  • ‹ previous
  • …
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?