Transient receptor potential canonical 5 mediates inflammatory mechanical and spontaneous pain in mice
Science translational medicine
Sadler, KE;Moehring, F;Shiers, SI;Laskowski, LJ;Mikesell, AR;Plautz, ZR;Brezinski, AN;Mecca, CM;Dussor, G;Price, TJ;McCorvy, JD;Stucky, CL;
PMID: 34039739 | DOI: 10.1126/scitranslmed.abd7702
Tactile and spontaneous pains are poorly managed symptoms of inflammatory and neuropathic injury. Here, we found that transient receptor potential canonical 5 (TRPC5) is a chief contributor to both of these sensations in multiple rodent pain models. Use of TRPC5 knockout mice and inhibitors revealed that TRPC5 selectively contributes to the mechanical hypersensitivity associated with CFA injection, skin incision, chemotherapy induced peripheral neuropathy, sickle cell disease, and migraine, all of which were characterized by elevated concentrations of lysophosphatidylcholine (LPC). Accordingly, exogenous application of LPC induced TRPC5-dependent behavioral mechanical allodynia, neuronal mechanical hypersensitivity, and spontaneous pain in naïve mice. Lastly, we found that 75% of human sensory neurons express TRPC5, the activity of which is directly modulated by LPC. On the basis of these results, TRPC5 inhibitors might effectively treat spontaneous and tactile pain in conditions characterized by elevated LPC.
Acute splanchnic vein thrombosis in patients with COVID-19: a systematic review
Digestive and Liver Disease
Buso, G;Becchetti, C;Berzigotti, A;
| DOI: 10.1016/j.dld.2021.05.021
There is increasing evidence that coronavirus disease 2019 (COVID-19) is associated with a significant risk of venous thromboembolism. While information are mainly available for deep vein thrombosis of the lower limb and pulmonary embolism, scarce data exist regarding acute splanchnic vein thrombosis (SVT) in this setting. PubMed, EMBASE and Google Scholar English-language articles published up to 30 January 2021 on SVT in COVID-19 were searched. Overall, 21 articles reporting equal number of patients were identified. 15 subjects presented with portal vein thrombosis, 11 with mesenteric vein thrombosis, four with splenic vein thrombosis, and two with Budd-Chiari syndrome. Male sex was prevalent (15 patients), and median age was 43 years (range 26–79 years). Three patients had a history of liver disease, while no subject had known myeloproliferative syndrome. Clinical presentation included mainly gastrointestinal symptoms. Anticoagulation was started in 16 patients. Three patients underwent bowel resection. Ten subjects developed gastric or bowel ischemia, seven of whom underwent bowel resection, and four died after SVT diagnosis.
Clinical and research applications of multiplexed immunohistochemistry and in situ hybridization
McGinnis, LM;Ibarra-Lopez, V;Rost, S;Ziai, J;
PMID: 33723864 | DOI: 10.1002/path.5663
Over the past decade, invention and adoption of novel multiplexing technologies for tissues have made increasing impacts in basic and translational research and, to a lesser degree, clinical medicine. Platforms capable of highly multiplexed immunohistochemistry or in situ RNA measurements promise evaluation of protein or RNA targets at levels of plex and sensitivity logs above traditional methods - all with preservation of spatial context. These methods promise objective biomarker quantification, markedly increased sensitivity, and single-cell resolution. Increasingly, development of novel technologies is enabling multi-omic interrogations with spatial correlation of RNA and protein expression profiles in the same sample. Such sophisticated methods will provide unprecedented insights into tissue biology, biomarker science and, ultimately, patient health. However, this sophistication comes at significant cost, requiring extensive time, practical knowledge, and resources to implement. This review will describe the technical features, advantages, and limitations of currently available multiplexed immunohistochemistry and spatial transcriptomic platforms. This article is protected by
Persistent repression of tau in the brain using engineered zinc finger protein transcription factors
Wegmann, S;DeVos, SL;Zeitler, B;Marlen, K;Bennett, RE;Perez-Rando, M;MacKenzie, D;Yu, Q;Commins, C;Bannon, RN;Corjuc, BT;Chase, A;Diez, L;Nguyen, HB;Hinkley, S;Zhang, L;Goodwin, A;Ledeboer, A;Lam, S;Ankoudinova, I;Tran, H;Scarlott, N;Amora, R;Surosky, R;Miller, JC;Robbins, AB;Rebar, EJ;Urnov, FD;Holmes, MC;Pooler, AM;Riley, B;Zhang, HS;Hyman, BT;
PMID: 33741591 | DOI: 10.1126/sciadv.abe1611
Neuronal tau reduction confers resilience against β-amyloid and tau-related neurotoxicity in vitro and in vivo. Here, we introduce a novel translational approach to lower expression of the tau gene MAPT at the transcriptional level using gene-silencing zinc finger protein transcription factors (ZFP-TFs). Following a single administration of adeno-associated virus (AAV), either locally into the hippocampus or intravenously to enable whole-brain transduction, we selectively reduced tau messenger RNA and protein by 50 to 80% out to 11 months, the longest time point studied. Sustained tau lowering was achieved without detectable off-target effects, overt histopathological changes, or molecular alterations. Tau reduction with AAV ZFP-TFs was able to rescue neuronal damage around amyloid plaques in a mouse model of Alzheimer's disease (APP/PS1 line). The highly specific, durable, and controlled knockdown of endogenous tau makes AAV-delivered ZFP-TFs a promising approach for the treatment of tau-related human brain diseases.
SARS-CoV-2 infection aggravates chronic comorbidities of cardiovascular diseases and diabetes in mice
Animal models and experimental medicine
Ma, Y;Lu, D;Bao, L;Qu, Y;Liu, J;Qi, X;Yu, L;Zhang, X;Qi, F;Lv, Q;Liu, Y;Shi, X;Sun, C;Li, J;Wang, J;Han, Y;Gao, K;Dong, W;Liu, N;Gao, S;Xue, J;Wei, Q;Pan, S;Gao, H;Zhang, L;Qin, C;
PMID: 33738432 | DOI: 10.1002/ame2.12155
Cardiovascular diseases (CVDs) and diabetes mellitus (DM) are top two chronic comorbidities that increase the severity and mortality of COVID-19. However, how SARS-CoV-2 alters the progression of chronic diseases remain unclear. We used adenovirus to deliver h-ACE2 to lung to enable SARS-CoV-2 infection in mice. SARS-CoV-2's impacts on pathogenesis of chronic diseases were studied through histopathological, virologic and molecular biology analysis. Pre-existing CVDs resulted in viral invasion, ROS elevation and activation of apoptosis pathways contribute myocardial injury during SARS-CoV-2 infection. Viral infection increased fasting blood glucose and reduced insulin response in DM model. Bone mineral density decreased shortly after infection, which associated with impaired PI3K/AKT/mTOR signaling. We established mouse models mimicked the complex pathological symptoms of COVID-19 patients with chronic diseases. Pre-existing diseases could impair the inflammatory responses to SARS-CoV-2 infection, which further aggravated the pre-existing diseases. This work provided valuable information to better understand the interplay between the primary diseases and SARS-CoV-2 infection.
Distinct subtypes of proprioceptive dorsal root ganglion neurons regulate adaptive proprioception in mice
Wu, H;Petitpré, C;Fontanet, P;Sharma, A;Bellardita, C;Quadros, RM;Jannig, PR;Wang, Y;Heimel, JA;Cheung, KKY;Wanderoy, S;Xuan, Y;Meletis, K;Ruas, J;Gurumurthy, CB;Kiehn, O;Hadjab, S;Lallemend, F;
PMID: 33589589 | DOI: 10.1038/s41467-021-21173-9
Proprioceptive neurons (PNs) are essential for the proper execution of all our movements by providing muscle sensory feedback to the central motor network. Here, using deep single cell RNAseq of adult PNs coupled with virus and genetic tracings, we molecularly identify three main types of PNs (Ia, Ib and II) and find that they segregate into eight distinct subgroups. Our data unveil a highly sophisticated organization of PNs into discrete sensory input channels with distinct spatial distribution, innervation patterns and molecular profiles. Altogether, these features contribute to finely regulate proprioception during complex motor behavior. Moreover, while Ib- and II-PN subtypes are specified around birth, Ia-PN subtypes diversify later in life along with increased motor activity. We also show Ia-PNs plasticity following exercise training, suggesting Ia-PNs are important players in adaptive proprioceptive function in adult mice.
Epithelial expression of Gata4 and Sox2 regulates specification of the squamous-columnar junction via MAPK/ERK signaling in mice
Sankoda, N;Tanabe, W;Tanaka, A;Shibata, H;Woltjen, K;Chiba, T;Haga, H;Sakai, Y;Mandai, M;Yamamoto, T;Yamada, Y;Uemoto, S;Kawaguchi, Y;
PMID: 33495473 | DOI: 10.1038/s41467-021-20906-0
The squamous-columnar junction (SCJ) is a boundary consisting of precisely positioned transitional epithelium between the squamous and columnar epithelium. Transitional epithelium is a hotspot for precancerous lesions, and is therefore clinically important; however, the origins and physiological properties of transitional epithelium have not been fully elucidated. Here, by using mouse genetics, lineage tracing, and organoid culture, we examine the development of the SCJ in the mouse stomach, and thus define the unique features of transitional epithelium. We find that two transcription factors, encoded by Sox2 and Gata4, specify primitive transitional epithelium into squamous and columnar epithelium. The proximal-distal segregation of Sox2 and Gata4 expression establishes the boundary of the unspecified transitional epithelium between committed squamous and columnar epithelium. Mechanistically, Gata4-mediated expression of the morphogen Fgf10 in the distal stomach and Sox2-mediated Fgfr2 expression in the proximal stomach induce the intermediate regional activation of MAPK/ERK, which prevents the differentiation of transitional epithelial cells within the SCJ boundary. Our results have implications for tissue regeneration and tumorigenesis, which are related to the SCJ.
STING controls nociception via type I interferon signalling in sensory neurons
Donnelly, CR;Jiang, C;Andriessen, AS;Wang, K;Wang, Z;Ding, H;Zhao, J;Luo, X;Lee, MS;Lei, YL;Maixner, W;Ko, MC;Ji, RR;
PMID: 33442058 | DOI: 10.1038/s41586-020-03151-1
The innate immune regulator STING is a critical sensor of self- and pathogen-derived DNA. DNA sensing by STING leads to the induction of type-I interferons (IFN-I) and other cytokines, which promote immune-cell-mediated eradication of pathogens and neoplastic cells1,2. STING is also a robust driver of antitumour immunity, which has led to the development of STING activators and small-molecule agonists as adjuvants for cancer immunotherapy3. Pain, transmitted by peripheral nociceptive sensory neurons (nociceptors), also aids in host defence by alerting organisms to the presence of potentially damaging stimuli, including pathogens and cancer cells4,5. Here we demonstrate that STING is a critical regulator of nociception through IFN-I signalling in peripheral nociceptors. We show that mice lacking STING or IFN-I signalling exhibit hypersensitivity to nociceptive stimuli and heightened nociceptor excitability. Conversely, intrathecal activation of STING produces robust antinociception in mice and non-human primates. STING-mediated antinociception is governed by IFN-Is, which rapidly suppress excitability of mouse, monkey and human nociceptors. Our findings establish the STING-IFN-I signalling axis as a critical regulator of physiological nociception and a promising new target for treating chronic pain.
Cranial Suture Regeneration Mitigates Skull and Neurocognitive Defects in Craniosynostosis
Yu, M;Ma, L;Yuan, Y;Ye, X;Montagne, A;He, J;Ho, TV;Wu, Y;Zhao, Z;Sta Maria, N;Jacobs, R;Urata, M;Wang, H;Zlokovic, BV;Chen, JF;Chai, Y;
PMID: 33417861 | DOI: 10.1016/j.cell.2020.11.037
Craniosynostosis results from premature fusion of the cranial suture(s), which contain mesenchymal stem cells (MSCs) that are crucial for calvarial expansion in coordination with brain growth. Infants with craniosynostosis have skull dysmorphology, increased intracranial pressure, and complications such as neurocognitive impairment that compromise quality of life. Animal models recapitulating these phenotypes are lacking, hampering development of urgently needed innovative therapies. Here, we show that Twist1+/- mice with craniosynostosis have increased intracranial pressure and neurocognitive behavioral abnormalities, recapitulating features of human Saethre-Chotzen syndrome. Using a biodegradable material combined with MSCs, we successfully regenerated a functional cranial suture that corrects skull deformity, normalizes intracranial pressure, and rescues neurocognitive behavior deficits. The regenerated suture creates a niche into which endogenous MSCs migrated, sustaining calvarial bone homeostasis and repair. MSC-based cranial suture regeneration offers a paradigm shift in treatment to reverse skull and neurocognitive abnormalities in this devastating disease.
Xiao L, Priest MF, Kozorovitskiy Y.
PMID: 29676731 | DOI: 10.7554/eLife.33892
The experience of rewarding or aversive stimuli is encoded by distinct afferents to dopamine (DA) neurons of the ventral tegmental area (VTA). Several neuromodulatory systems including oxytocin regulate DA neuron excitability and synaptic transmission that process socially meaningful stimuli. We and others have recently characterized oxytocinergic modulation of activity in mouse VTA DA neurons, but the mechanisms underlying oxytocinergic modulation of synaptic transmission in DA neurons remain poorly understood. Here, we find that oxytocin application or optogenetic release decrease excitatory synaptic transmission, via long lasting, presynaptic, endocannabinoid-dependent mechanisms. Oxytocin modulation of excitatory transmission alters the magnitude of short and long-term depression. We find that only some glutamatergic projections to DA neurons express CB1 receptors. Optogenetic stimulation of three major VTA inputs demonstrates that oxytocin modulation is limited to projections that show evidence of CB1R transcripts. Thus, oxytocin gates information flow into reward circuits in a temporally selective and pathway-specific manner.
Kisner A, Slocomb JE, Sarsfield S, Zuccoli ML, Siemian J, Gupta JF, Kumar A, Aponte Y.
PMID: 29894514 | DOI: 10.1371/journal.pone.0198991
Cracking the cytoarchitectural organization, activity patterns, and neurotransmitter nature of genetically-distinct cell types in the lateral hypothalamus (LH) is fundamental to develop a mechanistic understanding of how activity dynamics within this brain region are generated and operate together through synaptic connections to regulate circuit function. However, the precise mechanisms through which LH circuits orchestrate such dynamics have remained elusive due to the heterogeneity of the intermingled and functionally distinct cell types in this brain region. Here we reveal that a cell type in the mouse LH identified by the expression of the calcium-binding protein parvalbumin (PVALB; LHPV) is fast-spiking, releases the excitatory neurotransmitter glutamate, and sends long range projections throughout the brain. Thus, our findings challenge long-standing concepts that define neurons with a fast-spiking phenotype as exclusively GABAergic. Furthermore, we provide for the first time a detailed characterization of the electrophysiological properties of these neurons. Our work identifies LHPV neurons as a novel functional component within the LH glutamatergic circuitry.
Jais A, Paeger L, Sotelo-Hitschfeld T, Bremser S, Prinzensteiner M, Klemm P, Mykytiuk V, Widdershooven PJM, Vesting AJ, Grzelka K, Min�re M, Cremer AL, Xu J, Korotkova T, Lowell BB, Zeilhofer HU, Backes H, Fenselau H, Wunderlich FT, Kloppenburg P, Br�ning JC
PMID: 32302532 | DOI: 10.1016/j.neuron.2020.03.022
Calorie-rich diets induce hyperphagia and promote obesity, although the underlying mechanisms remain poorly defined. We find that short-term high-fat-diet (HFD) feeding of mice activates prepronociceptin (PNOC)-expressing neurons in the arcuate nucleus of the hypothalamus (ARC). PNOCARC neurons represent a previously unrecognized GABAergic population of ARC neurons distinct from well-defined feeding regulatory AgRP or POMC neurons. PNOCARC neurons arborize densely in the ARC and provide inhibitory synaptic input to nearby anorexigenic POMC neurons. Optogenetic activation of PNOCARC neurons in the ARC and their projections to the bed nucleus of the stria terminalis promotes feeding. Selective ablation of these cells promotes the activation of POMC neurons upon HFD exposure, reduces feeding, and protects from obesity, but it does not affect food intake or body weight under normal chow consumption. We characterize PNOCARC neurons as a novel ARC neuron population activated upon palatable food consumption to promote hyperphagia