Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

Your search for "INS" returned results. Search for our Top genes LGR5, vglut2, gad67, brca1

    Refine Probe List

    Content for comparison

    Gene

    • (-) Remove TBD filter TBD (1413)
    • Lgr5 (151) Apply Lgr5 filter
    • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
    • Gad1 (90) Apply Gad1 filter
    • vGlut2 (80) Apply vGlut2 filter
    • HPV E6/E7 (78) Apply HPV E6/E7 filter
    • Slc17a6 (77) Apply Slc17a6 filter
    • Axin2 (74) Apply Axin2 filter
    • SLC32A1 (74) Apply SLC32A1 filter
    • FOS (73) Apply FOS filter
    • Sst (65) Apply Sst filter
    • TH (63) Apply TH filter
    • VGAT (58) Apply VGAT filter
    • Gad2 (54) Apply Gad2 filter
    • tdTomato (54) Apply tdTomato filter
    • DRD2 (53) Apply DRD2 filter
    • Slc17a7 (52) Apply Slc17a7 filter
    • GLI1 (51) Apply GLI1 filter
    • PVALB (47) Apply PVALB filter
    • egfp (46) Apply egfp filter
    • ZIKV (46) Apply ZIKV filter
    • DRD1 (42) Apply DRD1 filter
    • GFAP (39) Apply GFAP filter
    • COL1A1 (38) Apply COL1A1 filter
    • Crh (37) Apply Crh filter
    • Chat (37) Apply Chat filter
    • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
    • Pomc (34) Apply Pomc filter
    • PDGFRA (33) Apply PDGFRA filter
    • Il-6 (33) Apply Il-6 filter
    • Cre (33) Apply Cre filter
    • AGRP (32) Apply AGRP filter
    • PECAM1 (32) Apply PECAM1 filter
    • Npy (32) Apply Npy filter
    • Wnt5a (31) Apply Wnt5a filter
    • CXCL10 (31) Apply CXCL10 filter
    • GLP1R (31) Apply GLP1R filter
    • Sox9 (29) Apply Sox9 filter
    • CD68 (28) Apply CD68 filter
    • Penk (28) Apply Penk filter
    • PD-L1 (28) Apply PD-L1 filter
    • ACTA2 (27) Apply ACTA2 filter
    • SHH (27) Apply SHH filter
    • VGluT1 (27) Apply VGluT1 filter
    • OLFM4 (26) Apply OLFM4 filter
    • GFP (26) Apply GFP filter
    • Rbfox3 (25) Apply Rbfox3 filter
    • MALAT1 (24) Apply MALAT1 filter
    • SOX2 (24) Apply SOX2 filter
    • Ccl2 (24) Apply Ccl2 filter

    Product

    • RNAscope (223) Apply RNAscope filter
    • TBD (148) Apply TBD filter
    • RNAscope Multiplex Fluorescent Assay (39) Apply RNAscope Multiplex Fluorescent Assay filter
    • RNAscope Fluorescent Multiplex Assay (11) Apply RNAscope Fluorescent Multiplex Assay filter
    • Basescope (10) Apply Basescope filter
    • RNAscope 2.5 HD Brown Assay (9) Apply RNAscope 2.5 HD Brown Assay filter
    • DNAscope HD Duplex Reagent Kit (8) Apply DNAscope HD Duplex Reagent Kit filter
    • RNAscope 2.5 HD Reagent Kit - BROWN (7) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
    • RNAscope HiPlex v2 assay (7) Apply RNAscope HiPlex v2 assay filter
    • RNAscope 2.5 HD Duplex (5) Apply RNAscope 2.5 HD Duplex filter
    • RNAscope Multiplex Fluorescent v2 (5) Apply RNAscope Multiplex Fluorescent v2 filter
    • RNAscope 2.5 HD Red assay (3) Apply RNAscope 2.5 HD Red assay filter
    • BASEscope Assay RED (2) Apply BASEscope Assay RED filter
    • DNAscope Duplex Assay (1) Apply DNAscope Duplex Assay filter
    • miRNAscope (1) Apply miRNAscope filter
    • RNAscope 2.5 HD Assay (1) Apply RNAscope 2.5 HD Assay filter
    • RNAscope 2.5 LS Assay (1) Apply RNAscope 2.5 LS Assay filter
    • RNAScope HiPlex assay (1) Apply RNAScope HiPlex assay filter
    • RNAscope HiPlex Image Registration Software (1) Apply RNAscope HiPlex Image Registration Software filter

    Research area

    • Neuroscience (143) Apply Neuroscience filter
    • Cancer (108) Apply Cancer filter
    • Development (54) Apply Development filter
    • Other: Methods (44) Apply Other: Methods filter
    • Inflammation (32) Apply Inflammation filter
    • Infectious (18) Apply Infectious filter
    • HIV (15) Apply HIV filter
    • Pain (14) Apply Pain filter
    • Stem Cells (13) Apply Stem Cells filter
    • HPV (12) Apply HPV filter
    • Other: Neuromuscular Disorders (10) Apply Other: Neuromuscular Disorders filter
    • Other: Heart (9) Apply Other: Heart filter
    • Other: Lung (9) Apply Other: Lung filter
    • CGT (8) Apply CGT filter
    • Covid (8) Apply Covid filter
    • Other: Metabolism (8) Apply Other: Metabolism filter
    • Infectious Disease (7) Apply Infectious Disease filter
    • Stem cell (7) Apply Stem cell filter
    • Immunotherapy (6) Apply Immunotherapy filter
    • Metabolism (6) Apply Metabolism filter
    • Other: Reproduction (6) Apply Other: Reproduction filter
    • Endocrinology (5) Apply Endocrinology filter
    • LncRNAs (5) Apply LncRNAs filter
    • Obesity (5) Apply Obesity filter
    • Reproduction (5) Apply Reproduction filter
    • Aging (4) Apply Aging filter
    • Cystic Fibrosis (4) Apply Cystic Fibrosis filter
    • Heart (4) Apply Heart filter
    • Itch (4) Apply Itch filter
    • lncRNA (4) Apply lncRNA filter
    • Other: Kidney (4) Apply Other: Kidney filter
    • Other: Skin (4) Apply Other: Skin filter
    • Transcriptomics (4) Apply Transcriptomics filter
    • Alzheimer's Disease (3) Apply Alzheimer's Disease filter
    • diabetes (3) Apply diabetes filter
    • Immunology (3) Apply Immunology filter
    • Kidney (3) Apply Kidney filter
    • Memory (3) Apply Memory filter
    • other: Aging (3) Apply other: Aging filter
    • Other: Eyes (3) Apply Other: Eyes filter
    • Other: Gut (3) Apply Other: Gut filter
    • Other: Huntington’s Disease (3) Apply Other: Huntington’s Disease filter
    • Other: Transcriptomics (3) Apply Other: Transcriptomics filter
    • Other: Zoological Disease (3) Apply Other: Zoological Disease filter
    • Psychiatry (3) Apply Psychiatry filter
    • Regeneration (3) Apply Regeneration filter
    • Reproductive Biology (3) Apply Reproductive Biology filter
    • Skin (3) Apply Skin filter
    • Stress (3) Apply Stress filter
    • Tumor microenvironment (3) Apply Tumor microenvironment filter

    Category

    • Publications (1419) Apply Publications filter
    Single cell transcriptomic analysis of murine lung development on hyperoxia-induced damage

    Nature communications

    2021 Mar 10

    Hurskainen, M;Mižíková, I;Cook, DP;Andersson, N;Cyr-Depauw, C;Lesage, F;Helle, E;Renesme, L;Jankov, RP;Heikinheimo, M;Vanderhyden, BC;Thébaud, B;
    PMID: 33692365 | DOI: 10.1038/s41467-021-21865-2

    During late lung development, alveolar and microvascular development is finalized to enable sufficient gas exchange. Impaired late lung development manifests as bronchopulmonary dysplasia (BPD) in preterm infants. Single-cell RNA sequencing (scRNA-seq) allows for assessment of complex cellular dynamics during biological processes, such as development. Here, we use MULTI-seq to generate scRNA-seq profiles of over 66,000 cells from 36 mice during normal or impaired lung development secondary to hyperoxia with validation of some of the findings in lungs from BPD patients. We observe dynamic populations of cells, including several rare cell types and putative progenitors. Hyperoxia exposure, which mimics the BPD phenotype, alters the composition of all cellular compartments, particularly alveolar epithelium, stromal fibroblasts, capillary endothelium and macrophage populations. Pathway analysis and predicted dynamic cellular crosstalk suggest inflammatory signaling as the main driver of hyperoxia-induced changes. Our data provides a single-cell view of cellular changes associated with late lung development in health and disease.
    Past, Present and Future of Cocaine- and Amphetamine-Regulated Transcript Peptide

    Physiology & behavior

    2021 Mar 08

    Yosten, GLC;Haddock, CJ;Harada, CM;Almeida-Pereira, G;Kolar, GR;Stein, LM;Hayes, MR;Salvemini, D;Samson, WK;
    PMID: 33705816 | DOI: 10.1016/j.physbeh.2021.113380

    The existence of the peptide encoded by the cocaine- and amphetamine-regulated transcript (Cartpt) has been recognized since 1981, but it was not until 1995, that the gene encoding CART peptide (CART) was identified. With the availability of the predicted protein sequence of CART investigators were able to identify sites of peptide localization, which then led to numerous approaches attempting to clarify CART's multiple pharmacologic effects and even provide evidence of potential physiologic relevance. Although not without controversy, a picture emerged of the importance of CART in ingestive behaviors, reward behaviors and even pain sensation. Despite the wealth of data hinting at the significance of CART, in the absence of an identified receptor, the full potential for this peptide or its analogs to be developed into therapeutic agents remained unrealized. There was evidence favoring the action of CART via a G protein-coupled receptor (GPCR), but despite multiple attempts the identity of that receptor eluded investigators until recently. Now with the identification of the previously orphaned GPCR, GPR160, as a receptor for CART, focus on this pluripotent neuropeptide will in all likelihood experience a renaissance and the potential for the development of pharmcotherapies targeting GPR160 seems within reach.
    Molecular correlates of muscle spindle and Golgi tendon organ afferents

    Nature communications

    2021 Mar 01

    Oliver, KM;Florez-Paz, DM;Badea, TC;Mentis, GZ;Menon, V;de Nooij, JC;
    PMID: 33649316 | DOI: 10.1038/s41467-021-21880-3

    Proprioceptive feedback mainly derives from groups Ia and II muscle spindle (MS) afferents and group Ib Golgi tendon organ (GTO) afferents, but the molecular correlates of these three afferent subtypes remain unknown. We performed single cell RNA sequencing of genetically identified adult proprioceptors and uncovered five molecularly distinct neuronal clusters. Validation of cluster-specific transcripts in dorsal root ganglia and skeletal muscle demonstrates that two of these clusters correspond to group Ia MS afferents and group Ib GTO afferent proprioceptors, respectively, and suggest that the remaining clusters could represent group II MS afferents. Lineage analysis between proprioceptor transcriptomes at different developmental stages provides evidence that proprioceptor subtype identities emerge late in development. Together, our data provide comprehensive molecular signatures for groups Ia and II MS afferents and group Ib GTO afferents, enabling genetic interrogation of the role of individual proprioceptor subtypes in regulating motor output.
    Localized EMT reprograms glial progenitors to promote spinal cord repair

    Developmental cell

    2021 Feb 16

    Klatt Shaw, D;Saraswathy, VM;Zhou, L;McAdow, AR;Burris, B;Butka, E;Morris, SA;Dietmann, S;Mokalled, MH;
    PMID: 33609461 | DOI: 10.1016/j.devcel.2021.01.017

    Anti-regenerative scarring obstructs spinal cord repair in mammals and presents a major hurdle for regenerative medicine. In contrast, adult zebrafish possess specialized glial cells that spontaneously repair spinal cord injuries by forming a pro-regenerative bridge across the severed tissue. To identify the mechanisms that regulate differential regenerative capacity between mammals and zebrafish, we first defined the molecular identity of zebrafish bridging glia and then performed cross-species comparisons with mammalian glia. Our transcriptomics show that pro-regenerative zebrafish glia activate an epithelial-to-mesenchymal transition (EMT) gene program and that EMT gene expression is a major factor distinguishing mammalian and zebrafish glia. Functionally, we found that localized niches of glial progenitors undergo EMT after spinal cord injury in zebrafish and, using large-scale CRISPR-Cas9 mutagenesis, we identified the gene regulatory network that activates EMT and drives functional regeneration. Thus, non-regenerative mammalian glia lack an essential EMT-driving gene regulatory network that reprograms pro-regenerative zebrafish glia after injury.
    Evolving Up‐regulation of Biliary Fibrosis–Related Extracellular Matrix Molecules After Successful Portoenterostomy

    Hepatology Communications

    2021 Feb 09

    Kyrönlahti, A;Godbole, N;Akinrinade, O;Soini, T;Nyholm, I;Andersson, N;Hukkinen, M;Lohi, J;Wilson, D;Pihlajoki, M;Pakarinen, M;Heikinheimo, M;
    | DOI: 10.1002/hep4.1684

    Successful portoenterostomy (SPE) improves the short‐term outcome of patients with biliary atresia (BA) by relieving cholestasis and extending survival with native liver. Despite SPE, hepatic fibrosis progresses in most patients, leading to cirrhosis and a deterioration of liver function. The goal of this study was to characterize the effects of SPE on the BA liver transcriptome. We used messenger RNA sequencing to analyze global gene‐expression patterns in liver biopsies obtained at the time of portoenterostomy (n = 13) and 1 year after SPE (n = 8). Biopsies from pediatric (n = 2) and adult (n = 2) organ donors and other neonatal cholestatic conditions (n = 5) served as controls. SPE was accompanied by attenuation of inflammation and concomitant up‐regulation of key extracellular matrix (ECM) genes. Highly overexpressed genes promoting biliary fibrosis and bile duct integrity, such as integrin subunit beta 6 and previously unreported laminin subunit alpha 3, emerged as candidates to control liver fibrosis after SPE. At a cellular level, the relative abundance of activated hepatic stellate cells and liver macrophages decreased following SPE, whereas portal fibroblasts (PFs) and cholangiocytes persisted. Conclusion: The attenuation of inflammation following SPE coincides with emergence of an ECM molecular fingerprint, a set of profibrotic molecules mechanistically connected to biliary fibrosis. The persistence of activated PFs and cholangiocytes after SPE suggests a central role for these cell types in the progression of biliary fibrosis.
    LPA signaling acts as a cell-extrinsic mechanism to initiate cilia disassembly and promote neurogenesis

    Nature communications

    2021 Jan 28

    Hu, HB;Song, ZQ;Song, GP;Li, S;Tu, HQ;Wu, M;Zhang, YC;Yuan, JF;Li, TT;Li, PY;Xu, YL;Shen, XL;Han, QY;Li, AL;Zhou, T;Chun, J;Zhang, XM;Li, HY;
    PMID: 33510165 | DOI: 10.1038/s41467-021-20986-y

    Dynamic assembly and disassembly of primary cilia controls embryonic development and tissue homeostasis. Dysregulation of ciliogenesis causes human developmental diseases termed ciliopathies. Cell-intrinsic regulatory mechanisms of cilia disassembly have been well-studied. The extracellular cues controlling cilia disassembly remain elusive, however. Here, we show that lysophosphatidic acid (LPA), a multifunctional bioactive phospholipid, acts as a physiological extracellular factor to initiate cilia disassembly and promote neurogenesis. Through systematic analysis of serum components, we identify a small molecular-LPA as the major driver of cilia disassembly. Genetic inactivation and pharmacological inhibition of LPA receptor 1 (LPAR1) abrogate cilia disassembly triggered by serum. The LPA-LPAR-G-protein pathway promotes the transcription and phosphorylation of cilia disassembly factors-Aurora A, through activating the transcription coactivators YAP/TAZ and calcium/CaM pathway, respectively. Deletion of Lpar1 in mice causes abnormally elongated cilia and decreased proliferation in neural progenitor cells, thereby resulting in defective neurogenesis. Collectively, our findings establish LPA as a physiological initiator of cilia disassembly and suggest targeting the metabolism of LPA and the LPA pathway as potential therapies for diseases with dysfunctional ciliogenesis.
    Pathology of COVID 19 associated acute kidney injury

    Clinical Kidney Journal

    2021 Jan 24

    Sharma, P;Ng, J;Bijol, V;Jhaveri, K;Wanchoo, R;
    | DOI: 10.1093/ckj/sfab003

    Acute kidney injury (AKI) is common among hospitalized patients with Coronavirus Infectious Disease 2019 (COVID-19), with the occurrence of AKI ranging from 0.5% to 80%. An improved knowledge of the pathology of AKI in COVID-19 is crucial to mitigate and manage AKI and to improve the survival of patients who develop AKI during COVID-19. In this review, we summarize the published cases and case series of various kidney pathology seen with COVID-19. Both live kidney biopsies and autopsy series suggest acute tubular injury as the most commonly encountered pathology. Collapsing glomerulopathy and thrombotic microangiopathy are other encountered pathologies noted in both live and autopsy tissues. Other rare findings such as ANCA vasculitis, Anti GBM disease, and podocytopathies have been reported. Although direct viral infection of the kidney is possible, it is certainly not a common or even widespread finding reported at the time of this writing (November 2020).
    A subset of spinal dorsal horn interneurons crucial for gating touch-evoked pain-like behavior

    Proceedings of the National Academy of Sciences of the United States of America

    2021 Jan 19

    Tashima, R;Koga, K;Yoshikawa, Y;Sekine, M;Watanabe, M;Tozaki-Saitoh, H;Furue, H;Yasaka, T;Tsuda, M;
    PMID: 33431693 | DOI: 10.1073/pnas.2021220118

    A cardinal, intractable symptom of neuropathic pain is mechanical allodynia, pain caused by innocuous stimuli via low-threshold mechanoreceptors such as Aβ fibers. However, the mechanism by which Aβ fiber-derived signals are converted to pain remains incompletely understood. Here we identify a subset of inhibitory interneurons in the spinal dorsal horn (SDH) operated by adeno-associated viral vectors incorporating a neuropeptide Y promoter (AAV-NpyP+) and show that specific ablation or silencing of AAV-NpyP+ SDH interneurons converted touch-sensing Aβ fiber-derived signals to morphine-resistant pain-like behavioral responses. AAV-NpyP+ neurons received excitatory inputs from Aβ fibers and transmitted inhibitory GABA signals to lamina I neurons projecting to the brain. In a model of neuropathic pain developed by peripheral nerve injury, AAV-NpyP+ neurons exhibited deeper resting membrane potentials, and their excitation by Aβ fibers was impaired. Conversely, chemogenetic activation of AAV-NpyP+ neurons in nerve-injured rats reversed Aβ fiber-derived neuropathic pain-like behavior that was shown to be morphine-resistant and reduced pathological neuronal activation of superficial SDH including lamina I. These findings suggest that identified inhibitory SDH interneurons that act as a critical brake on conversion of touch-sensing Aβ fiber signals into pain-like behavioral responses. Thus, enhancing activity of these neurons may offer a novel strategy for treating neuropathic allodynia.
    Functional characterization of the dural sinuses as a neuroimmune interface

    Cell

    2021 Jan 18

    Rustenhoven, J;Drieu, A;Mamuladze, T;de Lima, KA;Dykstra, T;Wall, M;Papadopoulos, Z;Kanamori, M;Salvador, AF;Baker, W;Lemieux, M;Da Mesquita, S;Cugurra, A;Fitzpatrick, J;Sviben, S;Kossina, R;Bayguinov, P;Townsend, RR;Zhang, Q;Erdmann-Gilmore, P;Smirnov, I;Lopes, MB;Herz, J;Kipnis, J;
    PMID: 33508229 | DOI: 10.1016/j.cell.2020.12.040

    Despite the established dogma of central nervous system (CNS) immune privilege, neuroimmune interactions play an active role in diverse neurological disorders. However, the precise mechanisms underlying CNS immune surveillance remain elusive; particularly, the anatomical sites where peripheral adaptive immunity can sample CNS-derived antigens and the cellular and molecular mediators orchestrating this surveillance. Here, we demonstrate that CNS-derived antigens in the cerebrospinal fluid (CSF) accumulate around the dural sinuses, are captured by local antigen-presenting cells, and are presented to patrolling T cells. This surveillance is enabled by endothelial and mural cells forming the sinus stromal niche. T cell recognition of CSF-derived antigens at this site promoted tissue resident phenotypes and effector functions within the dural meninges. These findings highlight the critical role of dural sinuses as a neuroimmune interface, where brain antigens are surveyed under steady-state conditions, and shed light on age-related dysfunction and neuroinflammatory attack in animal models of multiple sclerosis.
    The versican-hyaluronan complex provides an essential extracellular matrix niche for Flk1+ hematoendothelial progenitors

    Matrix biology : journal of the International Society for Matrix Biology

    2021 Jan 14

    Nandadasa, S;O'Donnell, A;Murao, A;Yamaguchi, Y;Midura, RJ;Olson, L;Apte, SS;
    PMID: 33454424 | DOI: 10.1016/j.matbio.2021.01.002

    Little is known about extracellular matrix (ECM) contributions to formation of the earliest cell lineages in the embryo. Here, we show that the proteoglycan versican and glycosaminoglycan hyaluronan are associated with emerging Flk1+ hematoendothelial progenitors at gastrulation. The mouse versican mutant Vcanhdf lacks yolk sac vasculature, with attenuated yolk sac hematopoiesis. CRISPR/Cas9-mediated Vcan inactivation in mouse embryonic stem cells reduced vascular endothelial and hematopoietic differentiation within embryoid bodies, which generated fewer blood colonies, and had an impaired angiogenic response to VEGF165. Hyaluronan was severely depleted in Vcanhdf embryos, with corresponding upregulation of the hyaluronan-depolymerase TMEM2. Conversely, hyaluronan-deficient mouse embryos also had vasculogenic suppression but with increased versican proteolysis. VEGF165 and Indian hedgehog, crucial vasculogenic factors, utilized the versican-hyaluronan matrix, specifically versican chondroitin sulfate chains, for binding. Versican-hyaluronan ECM is thus an obligate requirement for vasculogenesis and primitive hematopoiesis, providing a vasculogenic factor-enriching microniche for Flk1+ progenitors from their origin at gastrulation.
    Moderate Exercise Inhibits Age-Related Inflammation, Liver Steatosis, Senescence, and Tumorigenesis

    Journal of immunology (Baltimore, Md. : 1950)

    2021 Jan 13

    Bianchi, A;Marchetti, L;Hall, Z;Lemos, H;Vacca, M;Paish, H;Green, K;Elliott, B;Tiniakos, D;Passos, JF;Jurk, D;Mann, DA;Wilson, CL;
    PMID: 33441438 | DOI: 10.4049/jimmunol.2001022

    Age-related chronic inflammation promotes cellular senescence, chronic disease, cancer, and reduced lifespan. In this study, we wanted to explore the effects of a moderate exercise regimen on inflammatory liver disease and tumorigenesis. We used an established model of spontaneous inflammaging, steatosis, and cancer (nfkb1-/- mouse) to demonstrate whether 3 mo of moderate aerobic exercise was sufficient to suppress liver disease and cancer development. Interventional exercise when applied at a relatively late disease stage was effective at reducing tissue inflammation (liver, lung, and stomach), oxidative damage, and cellular senescence, and it reversed hepatic steatosis and prevented tumor development. Underlying these benefits were transcriptional changes in enzymes driving the conversion of tryptophan to NAD+, this leading to increased hepatic NAD+ and elevated activity of the NAD+-dependent deacetylase sirtuin. Increased SIRT activity was correlated with enhanced deacetylation of key transcriptional regulators of inflammation and metabolism, NF-κB (p65), and PGC-1α. We propose that moderate exercise can effectively reprogram pre-established inflammatory and metabolic pathologies in aging with the benefit of prevention of disease.
    Embryonic Microglia Interact with Hypothalamic Radial Glia during Development and Upregulate the TAM Receptors MERTK and AXL following an Insult

    Cell reports

    2021 Jan 05

    Rosin, JM;Marsters, CM;Malik, F;Far, R;Adnani, L;Schuurmans, C;Pittman, QJ;Kurrasch, DM;
    PMID: 33406432 | DOI: 10.1016/j.celrep.2020.108587

    Despite a growing appreciation for microglial influences on the developing brain, the responsiveness of microglia to insults during gestation remains less well characterized, especially in the embryo when microglia themselves are still maturing. Here, we asked if fetal microglia could coordinate an innate immune response to an exogenous insult. Using time-lapse imaging, we showed that hypothalamic microglia actively surveyed their environment by near-constant "touching" of radial glia projections. However, following an insult (i.e., IUE or AAV transduction), this seemingly passive touching became more intimate and long lasting, ultimately resulting in the retraction of radial glial projections and degeneration into small pieces. Mechanistically, the TAM receptors MERTK and AXL were upregulated in microglia following the insult, and Annexin V treatment inhibited radial glia breakage and engulfment by microglia. These data demonstrate a remarkable responsiveness of embryonic microglia to insults during gestation, a critical window for neurodevelopment. Crown

    Pages

    • « first
    • ‹ previous
    • …
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • …
    • next ›
    • last »
    X
    Description
    sense
    Example: Hs-LAG3-sense
    Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
    Intron#
    Example: Mm-Htt-intron2
    Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
    Pool/Pan
    Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
    A mixture of multiple probe sets targeting multiple genes or transcripts
    No-XSp
    Example: Hs-PDGFB-No-XMm
    Does not cross detect with the species (Sp)
    XSp
    Example: Rn-Pde9a-XMm
    designed to cross detect with the species (Sp)
    O#
    Example: Mm-Islr-O1
    Alternative design targeting different regions of the same transcript or isoforms
    CDS
    Example: Hs-SLC31A-CDS
    Probe targets the protein-coding sequence only
    EnEmProbe targets exons n and m
    En-EmProbe targets region from exon n to exon m
    Retired Nomenclature
    tvn
    Example: Hs-LEPR-tv1
    Designed to target transcript variant n
    ORF
    Example: Hs-ACVRL1-ORF
    Probe targets open reading frame
    UTR
    Example: Hs-HTT-UTR-C3
    Probe targets the untranslated region (non-protein-coding region) only
    5UTR
    Example: Hs-GNRHR-5UTR
    Probe targets the 5' untranslated region only
    3UTR
    Example: Rn-Npy1r-3UTR
    Probe targets the 3' untranslated region only
    Pan
    Example: Pool
    A mixture of multiple probe sets targeting multiple genes or transcripts

    Enabling research, drug development (CDx) and diagnostics

    Contact Us
    • Toll-free in the US and Canada
    • +1877 576-3636
    • 
    • 
    • 
    Company
    • Overview
    • Leadership
    • Careers
    • Distributors
    • Quality
    • News & Events
    • Webinars
    • Patents
    Products
    • RNAscope or BaseScope
    • Target Probes
    • Controls
    • Manual assays
    • Automated Assays
    • Accessories
    • Software
    • How to Order
    Research
    • Popular Applications
    • Cancer
    • Viral
    • Pathways
    • Neuroscience
    • Other Applications
    • RNA & Protein
    • Customer Innovations
    • Animal Models
    Technology
    • Overview
    • RNA Detection
    • Spotlight Interviews
    • Publications & Guides
    Assay Services
    • Our Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    • Your Benefits
    • How to Order
    Diagnostics
    • Diagnostics
    • Companion Diagnostics
    Support
    • Getting started
    • Contact Support
    • Troubleshooting Guide
    • FAQs
    • Manuals, SDS & Inserts
    • Downloads
    • Webinars
    • Training Videos

    Visit Bio-Techne and its other brands

    • bio-technie
    • protein
    • bio-spacific
    • rd
    • novus
    • tocris
    © 2025 Advanced Cell Diagnostics, Inc.
    • Terms and Conditions of Sale
    • Privacy Policy
    • Security
    • Email Preferences
    • 
    • 
    • 

    For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

     

    Contact Us / Request a Quote
    Download Manuals
    Request a PAS Project Consultation
    Order online at
    bio-techne.com
    OK
    X
    Contact Us

    Complete one of the three forms below and we will get back to you.

    For Quote Requests, please provide more details in the Contact Sales form below

    • Contact Sales
    • Contact Support
    • Contact Services
    • Offices

    Advanced Cell Diagnostics

    Our new headquarters office starting May 2016:

    7707 Gateway Blvd.  
    Newark, CA 94560
    Toll Free: 1 (877) 576-3636
    Phone: (510) 576-8800
    Fax: (510) 576-8798

     

    Bio-Techne

    19 Barton Lane  
    Abingdon Science Park
    Abingdon
    OX14 3NB
    United Kingdom
    Phone 2: +44 1235 529449
    Fax: +44 1235 533420

     

    Advanced Cell Diagnostics China

    20F, Tower 3,
    Raffles City Changning Office,
    1193 Changning Road, Shanghai 200051

    021-52293200
    info.cn@bio-techne.com
    Web: www.acdbio.com/cn

    For general information: Info.ACD@bio-techne.com
    For place an order: order.ACD@bio-techne.com
    For product support: support.ACD@bio-techne.com
    For career opportunities: hr.ACD@bio-techne.com

    See Distributors
    ×

    You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

    OK Cancel
    Need help?

    How can we help you?