Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (1452)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • (-) Remove TBD filter TBD (1413)
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • (-) Remove ACTA2 filter ACTA2 (27)
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope (223) Apply RNAscope filter
  • TBD (148) Apply TBD filter
  • RNAscope Multiplex Fluorescent Assay (52) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope Fluorescent Multiplex Assay (14) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope 2.5 HD Brown Assay (12) Apply RNAscope 2.5 HD Brown Assay filter
  • Basescope (10) Apply Basescope filter
  • DNAscope HD Duplex Reagent Kit (8) Apply DNAscope HD Duplex Reagent Kit filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (8) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope HiPlex v2 assay (7) Apply RNAscope HiPlex v2 assay filter
  • RNAscope 2.5 HD Duplex (6) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 HD Red assay (6) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope Multiplex Fluorescent v2 (6) Apply RNAscope Multiplex Fluorescent v2 filter
  • BASEscope Assay RED (3) Apply BASEscope Assay RED filter
  • DNAscope Duplex Assay (1) Apply DNAscope Duplex Assay filter
  • miRNAscope (1) Apply miRNAscope filter
  • RNAscope 2.0 Assay (1) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Assay (1) Apply RNAscope 2.5 HD Assay filter
  • RNAscope 2.5 LS Assay (1) Apply RNAscope 2.5 LS Assay filter
  • RNAScope HiPlex assay (1) Apply RNAScope HiPlex assay filter
  • RNAscope HiPlex Image Registration Software (1) Apply RNAscope HiPlex Image Registration Software filter

Research area

  • Neuroscience (149) Apply Neuroscience filter
  • Cancer (112) Apply Cancer filter
  • Development (60) Apply Development filter
  • Other: Methods (44) Apply Other: Methods filter
  • Inflammation (39) Apply Inflammation filter
  • Infectious (18) Apply Infectious filter
  • HIV (15) Apply HIV filter
  • Pain (14) Apply Pain filter
  • Stem Cells (14) Apply Stem Cells filter
  • HPV (12) Apply HPV filter
  • Other: Neuromuscular Disorders (10) Apply Other: Neuromuscular Disorders filter
  • Covid (9) Apply Covid filter
  • Other: Heart (9) Apply Other: Heart filter
  • Other: Lung (9) Apply Other: Lung filter
  • Other: Metabolism (9) Apply Other: Metabolism filter
  • CGT (8) Apply CGT filter
  • Stem cell (8) Apply Stem cell filter
  • Infectious Disease (7) Apply Infectious Disease filter
  • Immunotherapy (6) Apply Immunotherapy filter
  • LncRNAs (6) Apply LncRNAs filter
  • Metabolism (6) Apply Metabolism filter
  • Other (6) Apply Other filter
  • Other: Reproduction (6) Apply Other: Reproduction filter
  • Aging (5) Apply Aging filter
  • Endocrinology (5) Apply Endocrinology filter
  • lncRNA (5) Apply lncRNA filter
  • Obesity (5) Apply Obesity filter
  • Other: Kidney (5) Apply Other: Kidney filter
  • Other: Skin (5) Apply Other: Skin filter
  • Reproduction (5) Apply Reproduction filter
  • Cystic Fibrosis (4) Apply Cystic Fibrosis filter
  • Heart (4) Apply Heart filter
  • Itch (4) Apply Itch filter
  • Regeneration (4) Apply Regeneration filter
  • Transcriptomics (4) Apply Transcriptomics filter
  • Alzheimer's Disease (3) Apply Alzheimer's Disease filter
  • diabetes (3) Apply diabetes filter
  • Immunology (3) Apply Immunology filter
  • Kidney (3) Apply Kidney filter
  • Lung (3) Apply Lung filter
  • Memory (3) Apply Memory filter
  • other: Aging (3) Apply other: Aging filter
  • Other: Eyes (3) Apply Other: Eyes filter
  • Other: Gut (3) Apply Other: Gut filter
  • Other: Transcriptomics (3) Apply Other: Transcriptomics filter
  • Other: Zoological Disease (3) Apply Other: Zoological Disease filter
  • Reproductive Biology (3) Apply Reproductive Biology filter
  • Skin (3) Apply Skin filter
  • Stress (3) Apply Stress filter
  • Tumor microenvironment (3) Apply Tumor microenvironment filter

Category

  • Publications (1452) Apply Publications filter
Passive Immunization with a Single Monoclonal Neutralizing Antibody Protects against Cutaneous and Mucosal Mouse Papillomavirus Infections

Journal of virology

2022 Aug 24

Brendle, SA;Li, J;Cladel, NM;Balogh, KK;Booth, J;Shearer, DA;Walter, V;Lu, S;Christensen, ND;Covington, D;DeBroff, J;Milici, J;Zhu, Y;Viscidi, R;Hu, J;
PMID: 35920658 | DOI: 10.1128/jvi.00703-22

We have established a mouse papillomavirus (MmuPV1) model that induces both cutaneous and mucosal infections and cancers. In the current study, we use this model to test our hypothesis that passive immunization using a single neutralizing monoclonal antibody can protect both cutaneous and mucosal sites at different time points after viral inoculation. We conducted a series of experiments involving the administration of either a neutralizing monoclonal antibody, MPV.A4, or control monoclonal antibodies to both outbred and inbred athymic mice. Three clinically relevant mucosal sites (lower genital tract for females and anus and tongue for both males and females) and two cutaneous sites (muzzle and tail) were tested. At the termination of the experiments, all tested tissues were harvested for virological analyses. Significantly lower levels of viral signals were detected in the MPV.A4-treated female mice up to 6 h post-viral inoculation compared to those in the isotype control. Interestingly, males displayed partial protection when they received MPV.A4 at the time of viral inoculation, even though they were completely protected when receiving MPV.A4 at 24 h before viral inoculation. We detected MPV.A4 in the blood starting at 1 h and up to 8 weeks postadministration in some mice. Parallel to these in vivo studies, we conducted in vitro neutralization using a mouse keratinocyte cell line and observed complete neutralization up to 8 h post-viral inoculation. Thus, passive immunization with a monoclonal neutralizing antibody can protect against papillomavirus infection at both cutaneous and mucosal sites and is time dependent. IMPORTANCE This is the first study testing a single monoclonal neutralizing antibody (MPV.A4) by passive immunization against papillomavirus infections at both cutaneous and mucosal sites in the same host in the mouse papillomavirus model. We demonstrated that MPV.A4 administered before viral inoculation can protect both male and female athymic mice against MmuPV1 infections at cutaneous and mucosal sites. MPV.A4 also offers partial protection at 6 h post-viral inoculation in female mice. MPV.A4 can be detected in the blood from 1 h to 8 weeks after intraperitoneal (i.p.) injection. Interestingly, males were only partially protected when they received MPV.A4 at the time of viral inoculation. The failed protection in males was due to the absence of neutralizing MPV.A4 at the infected sites. Our findings suggest passive immunization with a single monoclonal neutralizing antibody can protect against diverse papillomavirus infections in a time-dependent manner in mice.
α1A-adrenaline receptors in dorsal horn inhibitory neurons have an inhibitory role in the regulation of chloroquine-induced itch in mice

Molecular brain

2021 Mar 16

Shiraishi, Y;Koga, K;Yamagata, R;Hatada, I;Shiratori-Hayashi, M;Tsuda, M;
PMID: 33726812 | DOI: 10.1186/s13041-021-00768-9

Our previous study showed the intrinsic ability of descending noradrenergic neurons projecting from the locus coeruleus to the spinal dorsal horn (SDH) to suppress itch-related behaviors. Noradrenaline and α1A-adrenaline receptor (α1A-AR) agonist increase inhibitory synaptic inputs onto SDH interneurons expressing gastrin-releasing peptide receptors, which are essential for itch transmission. However, the contribution of α1A-ARs expressed in SDH inhibitory interneurons to itch-related behavior remains to be determined. In this study, RNAscope in situ hybridization revealed that Adra1a mRNA is expressed in SDH inhibitory interneurons that are positive for Slc32a1 mRNA (known as vesicular GABA transporter). Mice with conditional knock-out of α1A-ARs in inhibitory interneurons (Vgat-Cre;Adra1aflox/flox mice) exhibited an increase in scratching behavior when induced by an intradermal injection of chloroquine, but not compound 48/80, which are known as models of histamine-independent and dependent itch, respectively. Furthermore, knockout of inhibitory neuronal α1A-ARs in the SDH using the CRISPR-Cas9 system also increased the scratching behavior elicited by chloroquine but not compound 48/80. Our findings demonstrated for the first time that α1A-ARs in SDH inhibitory interneurons contribute to the regulation of itch signaling with preference for histamine-independent itch.
Changes in sex differences in neuroanatomical structure and cognitive behavior across the life span

Learning & Memory

2022 Sep 01

Juraska, J;
| DOI: 10.1101/lm.053499.121

Sex differences occur in the structure and function of the rat cerebral cortex and hippocampus, which can change from the juvenile period through old age. Although the evidence is incomplete, it appears that in at least some portions of the cortex these differences develop due to the rise of ovarian hormones at puberty and are potentially not dependent on the perinatal rise in testosterone, which is essential for sexual differentiation of the hypothalamus and sexual behavior. During aging of female rats, the presence of continued ovarian hormone secretion after cessation of the estrous cycle also influences sex differences in neuroanatomical structure and cognitive behavior, resulting in nullification or reversal of sex differences seen in younger adults. Sex differences can be altered by experience in a stimulating environment during the juvenile/adolescent period, and sex differences in performance even can be affected by the parameters of a task. Thus, broad generalizations about differences such as “spatial ability” are to be avoided. It is clear that to understand how the brain produces behavior, sex and hormones have to be taken into account.
Wound healing in aged skin exhibits systems-level alterations in cellular composition and cell-cell communication

Cell reports

2022 Aug 02

Vu, R;Jin, S;Sun, P;Haensel, D;Nguyen, QH;Dragan, M;Kessenbrock, K;Nie, Q;Dai, X;
PMID: 35926463 | DOI: 10.1016/j.celrep.2022.111155

Delayed and often impaired wound healing in the elderly presents major medical and socioeconomic challenges. A comprehensive understanding of the cellular/molecular changes that shape complex cell-cell communications in aged skin wounds is lacking. Here, we use single-cell RNA sequencing to define the epithelial, fibroblast, immune cell types, and encompassing heterogeneities in young and aged skin during homeostasis and identify major changes in cell compositions, kinetics, and molecular profiles during wound healing. Our comparative study uncovers a more pronounced inflammatory phenotype in aged skin wounds, featuring neutrophil persistence and higher abundance of an inflammatory/glycolytic Arg1Hi macrophage subset that is more likely to signal to fibroblasts via interleukin (IL)-1 than in young counterparts. We predict systems-level differences in the number, strength, route, and signaling mediators of putative cell-cell communications in young and aged skin wounds. Our study exposes numerous cellular/molecular targets for functional interrogation and provides a hypothesis-generating resource for future wound healing studies.
Long Noncoding RNA MEG3 Expressed in Human Dental Pulp Regulates LPS-Induced Inflammation and Odontogenic Differentiation in Pulpitis

Experimental cell research

2021 Jan 29

Liu, M;Lingling, C;Wu, J;Lin, Z;Huang, S;
PMID: 33524362 | DOI: 10.1016/j.yexcr.2021.112495

Pulpitis refers to inflammation of the inner pulp by invading microbes, and tissue repair occurs due to odontogenic differentiation of human dental pulp cells (hDPCs) with multidifferentiation potential. Long noncoding RNAs (lncRNAs) can modulate numerous pathological and biological processes; however, the role of lncRNAs in the inflammation and regeneration of the dentin-pulp complex in pulpitis is unclear. Here, we performed high-throughput sequencing to identify differentially expressed lncRNAs between human normal and inflamed pulp and concluded that lncMEG3 (lncRNA maternally expressed gene 3, MEG3) was significantly upregulated in both inflamed pulp and LPS-treated hDPCs. MEG3 expression in the pulp tissue was detected using the RNAscope™ technique. RNA pulldown assays identified the MEG3-interacting proteins and the potential mechanisms. With MEG3 knockdown, we investigated the role of MEG3 in the secretion of inflammatory cytokines in LPS-treated hDPCs and odontogenic differentiation of hDPCs. MEG3 downregulation inhibited the secretion of TNF-α, IL-1β and IL-6 in LPS-treated hDPCs, and the p38/MAPK signaling pathway may be related to this effect. MEG3 knockdown promoted odontogenic differentiation of hDPCs by regulating the Wnt/β-catenin signaling pathway. Our study suggested that MEG3 has a negative effect on inflammation and regeneration of the dentin-pulp complex in pulpitis.
Blunted Neurogenesis in Major Depression and Normal Levels in High Functioning Antidepressant-Treated Subjects

SSRN Electronic Journal

2021 Jan 27

Tartt, A;Galfalvy, H;Dwork, A;Rosoklija, G;Fulmore, C;Carazo Arias, E;Anacker, C;Arango, V;Hen, R;Mann, J;Boldrini, M;
| DOI: 10.2139/ssrn.3770098

Adult hippocampal neurogenesis is implicated in antidepressant action in rodents and primates, yet relationships to human major depression (MDD) and antidepressant effects are unclear. In postmortem human hippocampus, we found doublecortin (DCX) protein and mRNA+ cells co-expressing neuronal but not astroglial or microglial markers. We defined neuroblasts as DCX+ cells located in the subgranular zone that co-expressed neuron-specific beta-tubulin (TUJ1) or lacked co-expression with neuronal nuclear marker (NeuN). Untreated MDD, regardless of clinical state, had fewer DCX-positive cells and neuroblasts in the rostral dentate gyrus compared with non-psychiatric controls. High-functioning, but not low-functioning, antidepressant-treated MDD, exhibited more DCX/TUJ1+ neuroblasts than untreated MDD. Groups did not differ in number of immature neurons, defined as DCX/NeuN+ cells in the inner granule cell layer. Deficient neuroblasts may be linked to hippocampal-dependent cognitive deficits in MDD. Similar neuroblast number between controls and higher-functioning antidepressant treated subjects warrants evaluation of neuroblasts as a treatment target.
Targeted Ptpn11 deletion in mice reveals the essential role of SHP2 in osteoblast differentiation and skeletal homeostasis

Bone research

2021 Jan 27

Wang, L;Yang, H;Huang, J;Pei, S;Wang, L;Feng, JQ;Jing, D;Zhao, H;Kronenberg, HM;Moore, DC;Yang, W;
PMID: 33500396 | DOI: 10.1038/s41413-020-00129-7

The maturation and function of osteoblasts (OBs) rely heavily on the reversible phosphorylation of signaling proteins. To date, most of the work in OBs has focused on phosphorylation by tyrosyl kinases, but little has been revealed about dephosphorylation by protein tyrosine phosphatases (PTPases). SHP2 (encoded by PTPN11) is a ubiquitously expressed PTPase. PTPN11 mutations are associated with both bone and cartilage manifestations in patients with Noonan syndrome (NS) and metachondromatosis (MC), although the underlying mechanisms remain elusive. Here, we report that SHP2 deletion in bone gamma-carboxyglutamate protein-expressing (Bglap+) bone cells leads to massive osteopenia in both trabecular and cortical bones due to the failure of bone cell maturation and enhanced osteoclast activity, and its deletion in Bglap+ chondrocytes results in the onset of enchondroma and osteochondroma in aged mice with increased tubular bone length. Mechanistically, SHP2 was found to be required for osteoblastic differentiation by promoting RUNX2/OSTERIX signaling and for the suppression of osteoclastogenesis by inhibiting STAT3-mediated RANKL production by osteoblasts and osteocytes. These findings are likely to explain the compromised skeletal system in NS and MC patients and to inform the development of novel therapeutics to combat skeletal disorders.
Single-Cell RNA Sequencing of Microglia throughout the Mouse Lifespan and in the Injured Brain Reveals Complex Cell-State Changes

Immunity.

2018 Nov 21

Hammond TR, Dufort C, Dissing-Olesen L, Giera S, Young A, Wysoker A, Walker AJ, Gergits F, Segel M, Nemesh J, Marsh SE, Saunders A, Macosko E, Ginhoux F, Chen J, Franklin RJM, Piao X, McCarroll SA, Stevens B.
PMID: 30471926 | DOI: 10.1016/j.immuni.2018.11.004

Microglia, the resident immune cells of the brain, rapidly change states in response to their environment, but we lack molecular and functional signatures of different microglial populations. Here, we analyzed the RNA expression patterns of more than 76,000 individual microglia in mice during development, in old age, and after brain injury. Our analysis uncovered at least nine transcriptionally distinct microglial states, which expressed unique sets of genes and were localized in the brain using specific markers. The greatest microglial heterogeneity was found at young ages; however, several states-including chemokine-enriched inflammatory microglia-persisted throughout the lifespan or increased in the aged brain. Multiple reactive microglial subtypes were also found following demyelinating injury in mice, at least one of which was also found in human multiple sclerosis lesions. These distinct microglia signatures can be used to better understand microglia function and to identify and manipulate specific subpopulations in health and disease.

New discoveries in the field of metabolism by applying Single-cell and Spatial Omics

Journal of Pharmaceutical Analysis

2023 Jun 01

Xie, B;Gao, D;Zhou, B;Chen, S;Wang, L;
| DOI: 10.1016/j.jpha.2023.06.002

Single-cell Multi-Omics (SCM-Omics) and Spatial Multi-Omics (SM-Omics) technologies provide state-of-the-art methods for exploring the composition and function of cell types in tissues/organs. Since its emergence in 2009, single-cell RNA sequencing (scRNA-seq) has yielded many groundbreaking new discoveries. The combination of this method with the emergence and development of SM-Omics techniques has been a pioneering strategy in neuroscience, developmental biology, and cancer research, especially for assessing tumor heterogeneity and T-cell infiltration. In recent years, the application of these methods in the study of metabolic diseases has also increased. The emerging SCM-Omics and SM-Omics approaches allow the molecular and spatial analysis of cells to explore regulatory states and determine cell fate, and thus provide promising tools for unraveling heterogeneous metabolic processes and making them amenable to intervention. Here, we review the evolution of SCM-Omics and SM-Omics technologies, and describe the progress in the application of SCM-Omics and SM-Omics in metabolism-related diseases, including obesity, diabetes, nonalcoholic fatty liver disease (NAFLD) and cardiovascular disease (CVD). We also conclude that the application of SCM-Omics and SM-Omics approaches can help resolve the molecular mechanisms underlying the pathogenesis of metabolic diseases in the body and facilitate therapeutic measures for metabolism-related diseases. This review concludes with an overview of the current status of this emerging field and the outlook for its future.
Identification of a ΔNp63-Dependent Basal-Like A Subtype-Specific Transcribed Enhancer Program (B-STEP) in Aggressive Pancreatic Ductal Adenocarcinoma

Molecular cancer research : MCR

2023 Jun 06

Wang, X;Kutschat, AP;Aggrey-Fynn, J;Hamdan, FH;Graham, RP;Wixom, AQ;Souto, Y;Ladigan-Badura, S;Yonkus, JA;Abdelrahman, AM;Alva-Ruiz, R;Gaedcke, J;Strobel, P;Kosinsky, RL;Wegwitz, F;Hermann, P;Truty, MJ;Siveke, JT;Hahn, SA;Hessmann, E;Johnsen, SA;Najafova, Z;
PMID: 37279184 | DOI: 10.1158/1541-7786.MCR-22-0916

A major hurdle to the application of precision oncology in pancreatic cancer is the lack of molecular stratification approaches and targeted therapy for defined molecular subtypes. In this work, we sought to gain further insight and identify molecular and epigenetic signatures of the basal-like A pancreatic ductal adenocarcinoma (PDAC) subgroup that can be applied to clinical samples for patient stratification and/or therapy monitoring. We generated and integrated global gene expression and epigenome mapping data from patient-derived xenograft (PDX) models to identify subtype-specific enhancer regions that were validated in patient-derived samples. In addition, complementary nascent transcription and chromatin topology (HiChIP) analyses revealed a basal-like A subtype-specific transcribed enhancer program (B-STEP) in PDAC characterized by enhancer RNA (eRNA) production that is associated with more frequent chromatin interactions and subtype-specific gene activation. Importantly, we successfully confirmed the validity of eRNA detection as a possible histological approach for PDAC patient stratification by performing RNA in situ hybridization analyses for subtype-specific eRNAs on pathological tissue samples. Thus, this study provides proof-of-concept that subtype-specific epigenetic changes relevant for PDAC progression can be detected at a single cell level in complex, heterogeneous, primary tumor material. Implications: Subtype-specific enhancer activity analysis via detection of eRNAs on a single cell level in patient material can be used as a potential tool for treatment stratification.
Allogeneic CAR T Cells Targeting DLL3 Are Efficacious and Safe in Preclinical Models of Small Cell Lung Cancer

Clinical cancer research : an official journal of the American Association for Cancer Research

2023 Jan 23

Zhang, Y;Tacheva-Grigorova, SK;Sutton, J;Melton, Z;Mak, YSL;Lay, C;Smith, BA;Sai, T;Van Blarcom, T;Sasu, BJ;Panowski, SH;
PMID: 36692420 | DOI: 10.1158/1078-0432.CCR-22-2293

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options. Delta-like ligand 3 (DLL3) is highly expressed on SCLC and several other types of neuroendocrine cancers, with limited normal tissue RNA expression in brain, pituitary, and testis, making it a promising CAR T-cell target for SCLC and other solid tumor indications.A large panel of anti-DLL3 scFv-based CARs were characterized for both in vitro and in vivo activity. To understand the potential for pituitary and brain toxicity, subcutaneous or intracranial tumors expressing DLL3 were implanted in mice and treated with mouse cross-reactive DLL3 CAR T cells.A subset of CARs demonstrated high sensitivity for targets with low DLL3 density and long-term killing potential in vitro. Infusion of DLL3 CAR T cells led to robust antitumor efficacy, including complete responses, in subcutaneous and systemic SCLC in vivo models. CAR T-cell infiltration into intermediate and posterior pituitary was detected, but no tissue damage in brain or pituitary was observed, and the hormone-secretion function of the pituitary was not ablated.In summary, the preclinical efficacy and safety data presented here support further evaluation of DLL3 CAR T cells as potential clinical candidates for the treatment of SCLC.
Nociception and pain in humans lacking functional TRPV1 channel

The Journal of clinical investigation

2022 Dec 01

Katz, B;Zaguri, R;Edvardson, S;Maayan, C;Elpeleg, O;Lev, S;Davidson, E;Peters, M;Kfir-Erenfeld, S;Berger, E;Ghazalin, S;Binshtok, AM;Minke, B;
PMID: 36454632 | DOI: 10.1172/JCI153558

Chronic-pain is a debilitating illness that has become exceedingly widespread with currently limited treatments. Differences in the molecular signature of nociceptors, have been demonstrated between human and the commonly-used mouse model, suggesting functional differences in detection and transmission of noxious-stimuli. Therefore, direct understanding of pain-physiology in humans is required for pain treatment. This could be facilitated by studying humans carrying deleterious genetic mutations affecting pain sensation. The transient receptor potential vanilloid 1 (TRPV1) channel is associated with several body-functions, in particular, noxious-heat detection and inflammatory-pain. Reports of adverse effects in human trials have hinder the clinical development of TRPV1 antagonists as novel pain relievers. Hence, studies on the functional roles of TRPV1, which currently rely mainly on evidences obtained from rodents, should be extended to humans. Here, we examined humans carrying a unique missense mutation in TRPV1, rendering the channel non-functional. The affected individual demonstrated lack of aversion towards capsaicin and elevated heat-pain threshold. Surprisingly, he showed elevated cold-pain threshold and extensive neurogenic inflammatory flare and pain-responses following application of the TRPA1 channel-activator, mustard-oil. Our study provides the first direct evidence for pain-related functional-changes linked to TRPV1 in humans, which is a prime target in the development of novel pain-relievers.

Pages

  • « first
  • ‹ previous
  • …
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?