Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (6)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • SARS-CoV-2 (28) Apply SARS-CoV-2 filter
  • Lgr5 (26) Apply Lgr5 filter
  • Axin2 (24) Apply Axin2 filter
  • ZIKV (20) Apply ZIKV filter
  • V-nCoV2019-S (11) Apply V-nCoV2019-S filter
  • GLI1 (9) Apply GLI1 filter
  • Wnt5a (8) Apply Wnt5a filter
  • Bmp4 (7) Apply Bmp4 filter
  • HIV (7) Apply HIV filter
  • Wnt10a (6) Apply Wnt10a filter
  • Wnt10b (6) Apply Wnt10b filter
  • Wnt7b (6) Apply Wnt7b filter
  • COL1A1 (6) Apply COL1A1 filter
  • Dkk1 (6) Apply Dkk1 filter
  • Ccl2 (6) Apply Ccl2 filter
  • Wnt3a (6) Apply Wnt3a filter
  • TGFB1 (5) Apply TGFB1 filter
  • Wnt1 (5) Apply Wnt1 filter
  • Wnt4 (5) Apply Wnt4 filter
  • Ptch1 (5) Apply Ptch1 filter
  • FGFR2 (5) Apply FGFR2 filter
  • Wnt2b (5) Apply Wnt2b filter
  • Wnt5b (5) Apply Wnt5b filter
  • Vegfa (5) Apply Vegfa filter
  • (-) Remove IL-10 filter IL-10 (5)
  • Bmp2 (5) Apply Bmp2 filter
  • WNT2 (5) Apply WNT2 filter
  • Sfrp2 (5) Apply Sfrp2 filter
  • Wnt3 (5) Apply Wnt3 filter
  • OLFM4 (5) Apply OLFM4 filter
  • SARS-CoV-2  (5) Apply SARS-CoV-2  filter
  • Dkk3 (4) Apply Dkk3 filter
  • Wnt16 (4) Apply Wnt16 filter
  • Wnt7a (4) Apply Wnt7a filter
  • Fgfr3 (4) Apply Fgfr3 filter
  • Sox9 (4) Apply Sox9 filter
  • IL17A (4) Apply IL17A filter
  • FGFR1 (4) Apply FGFR1 filter
  • Wnt11 (4) Apply Wnt11 filter
  • Wnt8a (4) Apply Wnt8a filter
  • Wnt8b (4) Apply Wnt8b filter
  • Wnt9a (4) Apply Wnt9a filter
  • Wnt9b (4) Apply Wnt9b filter
  • SHH (4) Apply SHH filter
  • Col2a1 (4) Apply Col2a1 filter
  • CXCL12 (4) Apply CXCL12 filter
  • Adamts18 (4) Apply Adamts18 filter
  • Ackr2 (4) Apply Ackr2 filter
  • EBOV (4) Apply EBOV filter
  • Wnt6 (3) Apply Wnt6 filter

Product

  • (-) Remove RNAscope 2.5 HD Red assay filter RNAscope 2.5 HD Red assay (6)

Research area

  • Infectious Disease (2) Apply Infectious Disease filter
  • Inflammation (2) Apply Inflammation filter
  • Cancer (1) Apply Cancer filter
  • Kidney (1) Apply Kidney filter

Category

  • Publications (6) Apply Publications filter
Spleen tyrosine kinase inhibition is an effective treatment for established vasculitis in a pre-clinical mode

Kidney Int

2020 Jan 16

Stephen P. McAdoo,' Stephen P. McAdoo Stephen P. McAdoo, Maria Prendecki, Anisha Tanna Tejal Bhatt, Gurjeet Bhangal1, John McDaid, Esteban S. Masuda, H. Terence Cook, Frederick WK. Tam, Charles D. Pusey
| DOI: 10.1016/j.kint.2019.12.014 hideArticle Info

The anti-neutrophil cytoplasm antibody (ANCA)-associated vasculitides (AAV) are a group of life-threatening multi-system diseases characterized by necrotising inflammation of small blood vessels and crescentic glomerulonephritis. ANCA are thought to play a direct pathogenic role. Previous studies have shown that spleen tyrosine kinase (SYK) is phosphorylated during ANCA-induced neutrophil activation in vitro. However, the role of SYK in vivo is unknown. Here, we studied its role in the pathogenesis of experimental autoimmune vasculitis, a pre-clinical model of myeloperoxidase-ANCA-induced pauci-immune systemic vasculitis in the Wistar Kyoto rat. Up-regulation of SYK expression in inflamed renal and pulmonary tissue during early autoimmune vasculitis was confirmed by immunohistochemical and transcript analysis. R406, the active metabolite of fostamatinib, a small molecule kinase inhibitor with high selectivity for SYK, inhibited ANCA-induced pro-inflammatory responses in rat leucocytes in vitro. In an in vivo study, treatment with fostamatinib for 14 days after disease onset resulted in rapid resolution of urinary abnormalities, significantly improved renal and pulmonary pathology, and preserved renal function. Short-term exposure to fostamatinib did not significantly affect circulating myeloperoxidase-ANCA levels, suggesting inhibition of ANCA-induced inflammatory mechanisms in vivo. Finally, SYK expression was demonstrated within inflammatory glomerular lesions in ANCA-associated glomerulonephritis in patients, particularly within CD68+ve monocytes/macrophages. Thus, our data indicate that SYK inhibition warrants clinical investigation in the treatment of AAV.
Benzimidazoles promote anti-TNF mediated induction of regulatory macrophages and enhance therapeutic efficacy in a murine model

Journal of Crohn's and Colitis

2017 Aug 16

Wildenberg ME, Levin AD, Ceroni A, Guo Z, Koelink PJ, Hakvoort TBM, Westera L, Bloemendaal FM, Brandse JF, Simmons A, D’Haens GR, Ebner D, van den Brink GR.
PMID: - | DOI: 10.1093/ecco-jcc/jjx104

Abstract

Background and Aims

Regulatory macrophages play a critical role in tissue repair, and we have previously shown that anti-tumour necrosis factor [TNF] antibodies induce these macrophages in vitro and in vivo in IBD patients. The induction of regulatory macrophages can be potentiated using the combination of anti-TNF and thiopurines, consistent with the enhanced efficacy of this combination therapy described in clinical trials. As thiopurines are unfortunately associated with significant side effects, we here aimed to identify alternatives for combination therapy with anti-TNF, using the macrophage induction model as a screening tool.

Methods

Mixed lymphocyte reactions were treated with anti-TNF and a library of 1600 drug compounds. Induction of CD14+CD206+ macrophages was analysed by flow cytometry. Positive hits were validated in vitro and in the T cell transfer model of colitis.

Results

Among the 98 compounds potentiating the induction of regulatory macrophages by anti-TNF were six benzimidazoles, including albendazole. Albendazole treatment in the presence of anti-TNF resulted in alterations in the tubulin skeleton and signalling though AMPK, which was required for the enhanced induction. Combination therapy also increased expression levels of the immunoregulatory cytokine IL-10. In vivo, albendazole plus anti-TNF combination therapy was superior to monotherapy in a model of colitis, in terms of both induction of regulatory macrophages and improvement of clinical symptoms.

Conclusions

Albendazole enhances the induction of regulatory macrophages by anti-TNF and potentiates clinical efficacy in murine colitis. Given its favourable safety profile, these data indicate that the repurposing of albendazole may be a novel option for anti-TNF combination therapy in IBD.

Interleukin-10 induces expression of CD39 on CD8+T cells to potentiate anti-PD1 efficacy in EGFR-mutated non-small cell lung cancer

Journal for immunotherapy of cancer

2022 Dec 01

Qiao, M;Zhou, F;Liu, X;Jiang, T;Wang, H;Jia, Y;Li, X;Zhao, C;Cheng, L;Chen, X;Ren, S;Liu, H;Zhou, C;
PMID: 36543373 | DOI: 10.1136/jitc-2022-005436

Anti-PD-1(L1) therapies are less efficacious in patients with EGFR-mutated non-small-cell lung cancer. However, the underlying mechanism is poorly understood.The characteristics of T cells in EGFR-mutated and wild-type tumors were analyzed based on The Cancer Genome Atlas database and clinical samples. Plasma levels of 8 T-cell-related cytokines were evaluated and its association with immunotherapy efficacy were explored. Association between EGFR signaling pathway and IL-10 was examined through tumor cell lines and clinical tumor samples. In vitro restimulation model of human CD8+T cells isolated from peripheral blood was used to analyze the impact of IL-10 on T cells. Doxycycline-inducible transgenic EGFRL858R mouse models were used to investigate the efficacy of combining recombinant mouse IL-10 protein and PD-1 blockade and its underlying mechanism in vivo.EGFR-mutated tumors showed a lack of CD8+T cell infiltration and impaired CD8+T cell cytotoxic function. The incompetent CD8+T cells in EGFR-mutated tumors were characterized as absence of CD39 expression, which defined hallmarks of cytotoxic and exhausted features and could not be reinvigorated by anti-PD-1(L1) treatment. Instead, CD39 expression defined functional states of CD8+T cells and was associated with the therapeutic response of anti-PD-1(L1) therapies. Mechanically, IL-10 upregulated CD39 expression and was limited in EGFR-mutated tumors. IL-10 induced hallmarks of CD8+T cells immunity in CD39-dependent manner. Using autochthonous EGFR L858R-driven lung cancer mouse models, combining recombinant mouse IL-10 protein and PD-1 blockade optimized antitumor effects in EGFR-mutated lung tumors.Our study suggested that owing to low level of IL-10 to induce the expression of CD39 on CD8+T cells, fewer phenotypically cytotoxic and exhausted CD39+CD8+T cells in EGFR-mutated tumors could be potentially reinvigorated by anti-PD-1(L1) treatment. Hence, IL-10 could potentially serve as a cytokine-based strategy to enhance efficacy of anti-PD-1(L1) treatment in EGFR-mutated tumors.
Type, Frequency, and Spatial Distribution of Immune Cell Infiltrates in CNS Germinomas: Evidence for Inflammatory and Immunosuppressive Mechanisms

J Neuropathol Exp Neurol.

2017 Dec 11

Zapka Z, Dörner E, Dreschmann V, Sakamato N, Kristiansen G, Calaminus G, Vokuhl C, MD, Leuschner I, Pietsch T.
PMID: 29237087 | DOI: 10.1093/jnen/nlx106

Central nervous system germinomas are characterized by a massive immune cell infiltrate. We systematically characterized these immune cells in 28 germinomas by immunophenotyping and image analysis. mRNA expression was analyzed by Nanostring technology and in situ RNA hybridization. Tumor infiltrating lymphocytes (TILs) were composed of 61.8% ± 3.1% (mean ± SE) CD3-positive T cells, including 45.2% ± 3.5% of CD4-positive T-helper cells, 23.4% ± 1.5% of CD8-positive cytotoxic T cells, 5.5% ± 0.9% of FoxP3-positive regulatory T cells, and 11.9% ±1.3% PD-1-positive TILs. B cells accounted for 35.8% ± 2.9% of TILs and plasma cells for 9.3% ± 1.6%. Tumor-associated macrophages consisted of clusters of activated PD-L1-positive macrophages and interspersed anti-inflammatory macrophages expressing CD163. Germinoma cells did not express PD-L1. Expression of genes encoding immune cell markers and cytokines was high and comparable to mRNA levels in lymph node tissue. IFNG and IL10 mRNA was detected in subfractions of TILs and in PD-L1-positive macrophages. Taken together, the strong immune reaction observed in germinomas involves inflammatory as well as various suppressive mechanisms. Expression of PD-1 and PD-L1 and infiltration of cytotoxic T cells are biomarkers predictive of response to anti-PD-1/PD-L1 therapies, constituting a rationale for possible novel treatment approaches.

Multinucleated giant cell cytokine expression in pulmonary granulomas of cattle experimentally infected with Mycobacterium bovis.

Veterinary Immunology and Immunopathology

2016 Aug 31

Palmer MV , Thacker TC, Waters WR.
PMID: - | DOI: 10.1016/j.vetimm.2016.08.015

Regardless of host, pathogenic mycobacteria of the Mycobacterium tuberculosiscomplex such as Mycobacterium bovis, induce a characteristic lesion known as agranuloma, tubercle or tuberculoid granuloma. Granulomas represent a distinct host response to chronic antigenic stimuli, such as foreign bodies, certain bacterial components, or persistent pathogens such as M. bovis. Granulomas are composed of specific cell types including epithelioid macrophages, lymphocytes and a morphologically distinctive cell type, the multinucleated giant cell. Multinucleated giant cells are formed by the fusion of multiple macrophages; however, their function remains unclear. In humans, giant cells in tuberculous granulomas have been shown to express various cytokines, chemokines and enzymes important to the formation and maintenance of the granuloma. The objective of this study was to quantitatively assess multinucleated giant cell cytokine expression in bovine tuberculoid granulomas; focusing on cytokines of suspected relevance to bovine tuberculosis. Using calves experimentally infected with M. bovis, in situ cytokine expression was quantitatively assessed using RNAScope® for the following cytokines TNF-α, IFN-γ, TGF-β, IL-17A and IL-10. Multinucleated giant cells in bovine tuberculoid granulomas expressed all examined cytokines to varying degrees, with differential expression of TGF-β, IL-17A and IL-10 in giant cells from early versus late stage granulomas. There was a modest, positive correlation between the level of cytokine expression and cell size or number of nuclei. These results suggest that multinucleated giant cells are active participants within bovine tuberculoid granulomas, contributing to the cytokine milieu necessary to form and maintain granulomas.

Early Pulmonary Lesions in Cattle Infected via Aerosolized Mycobacterium bovis

Vet Pathol

2019 Mar 21

Palmer MV, Wiarda J, Kanipe C and Thacker TC
PMID: 30895908 | DOI: 10.1177/0300985819833454

Mycobacterium bovis is a serious zoonotic pathogen and the cause of tuberculosis in many mammalian species, most notably, cattle. The hallmark lesion of tuberculosis is the granuloma. It is within the developing granuloma where host and pathogen interact; therefore, it is critical to understand host-pathogen interactions at the granuloma level. Cytokines and chemokines drive cell recruitment, activity, and function and ultimately determine the success or failure of the host to control infection. In calves, early lesions (ie, 15 and 30 days) after experimental aerosol infection were examined microscopically using in situ hybridization and immunohistochemistry to demonstrate early infiltrates of CD68+ macrophages within alveoli and alveolar interstitium, as well as the presence of CD4, CD8, and gammadelta T cells. Unlike lesions at 15 days, lesions at 30 days after infection contained small foci of necrosis among infiltrates of macrophages, lymphocytes, neutrophils, and multinucleated giant cells and extracellular acid-fast bacilli within necrotic areas. At both time points, there was abundant expression of the chemokines CXCL9, MCP-1/CCL2, and the cytokine transforming growth factor (TGF)-beta. The proinflammatory cytokines tumor necrosis factor (TNF)-alpha and interleukin (IL)-1beta, as well as the anti-inflammatory cytokine IL-10, were expressed at moderate levels at both time points, while expression of IFN-gamma was limited. These findings document the early pulmonary lesions after M. bovis infection in calves and are in general agreement with the proposed pathogenesis of tuberculosis described in laboratory animal and nonhuman primate models of tuberculosis.
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?