Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (108)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • (-) Remove Sst filter Sst (65)
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • (-) Remove egfp filter egfp (46)
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope Fluorescent Multiplex Assay (52) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope Multiplex Fluorescent Assay (26) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope (8) Apply RNAscope filter
  • RNAscope Multiplex Fluorescent v2 (5) Apply RNAscope Multiplex Fluorescent v2 filter
  • RNAscope 2.5 HD Red assay (3) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.0 Assay (2) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD duplex reagent kit (1) Apply RNAscope 2.5 HD duplex reagent kit filter
  • RNAscope Fluorescent Multiplex Reagent kit (1) Apply RNAscope Fluorescent Multiplex Reagent kit filter

Research area

  • Neuroscience (83) Apply Neuroscience filter
  • Other (9) Apply Other filter
  • Development (4) Apply Development filter
  • Developmental (4) Apply Developmental filter
  • CGT (3) Apply CGT filter
  • diabetes (3) Apply diabetes filter
  • Inflammation (2) Apply Inflammation filter
  • Kidney (2) Apply Kidney filter
  • Pain (2) Apply Pain filter
  • Single Cell (2) Apply Single Cell filter
  • Stem Cells (2) Apply Stem Cells filter
  • Anxiety (1) Apply Anxiety filter
  • Behavior (1) Apply Behavior filter
  • Bioinformatics (1) Apply Bioinformatics filter
  • Cardiovascular Disease (1) Apply Cardiovascular Disease filter
  • Cross Species Evolution (1) Apply Cross Species Evolution filter
  • emotional valence (1) Apply emotional valence filter
  • Evolution (1) Apply Evolution filter
  • lncRNA (1) Apply lncRNA filter
  • Locomotion (1) Apply Locomotion filter
  • Memory (1) Apply Memory filter
  • Metabolism (1) Apply Metabolism filter
  • Motor Behaviors (1) Apply Motor Behaviors filter
  • Nueroscience (1) Apply Nueroscience filter
  • Other: Metabolism (1) Apply Other: Metabolism filter
  • Other: Opioid use disorder (1) Apply Other: Opioid use disorder filter
  • Other: Prosocial comforting behavior (1) Apply Other: Prosocial comforting behavior filter
  • Other: Spleen (1) Apply Other: Spleen filter
  • Sex Differences (1) Apply Sex Differences filter
  • Sleep (1) Apply Sleep filter
  • Social Trauma (1) Apply Social Trauma filter
  • Stress (1) Apply Stress filter
  • Transcriptomics (1) Apply Transcriptomics filter

Category

  • Publications (108) Apply Publications filter
Distinct Ventral Pallidal Neural Populations Mediate Separate Symptoms of Depression

Cell.

2017 Jul 13

Knowland D, Lilascharoen V, Pacia CP, Shin S, Wang EH, Lim BK.
PMID: 28689640 | DOI: 10.1016/j.cell.2017.06.015

Major depressive disorder (MDD) patients display a common but often variable set of symptoms making successful, sustained treatment difficult to achieve. Separate depressive symptoms may be encoded by differential changes in distinct circuits in the brain, yet how discrete circuits underlie behavioral subsets of depression and how they adapt in response to stress has not been addressed. We identify two discrete circuits of parvalbumin-positive (PV) neurons in the ventral pallidum (VP) projecting to either the lateral habenula or ventral tegmental area contributing to depression. We find that these populations undergo different electrophysiological adaptations in response to social defeat stress, which are normalized by antidepressant treatment. Furthermore, manipulation of each population mediates either social withdrawal or behavioral despair, but not both. We propose that distinct components of the VP PV circuit can subserve related, yet separate depressive-like phenotypes in mice, which could ultimately provide a platform for symptom-specific treatments of depression.

A parabrachial-to-amygdala circuit that determines hemispheric lateralization of somatosensory processing

Biological Psychiatry

2022 Sep 01

Allen, H;Chaudhry, S;Hong, V;Lewter, L;Sinha, G;Carrasquillo, Y;Taylor, B;Kolber, B;
| DOI: 10.1016/j.biopsych.2022.09.010

Background The central amygdala (CeA) is a bilateral hub of pain and emotional processing with well-established functional lateralization. We reported that optogenetic manipulation of neural activity in the left and right CeA has opposing effects on bladder pain. Methods To determine the influence of calcitonin gene-related peptide (CGRP) signaling from the parabrachial nucleus (PBN) on this diametrically opposed lateralization, we administered CGRP and evaluated the activity of CeA neurons in acute brain slices as well as the behavioral signs of bladder pain in the mouse. Results We found that CGRP increased firing in both the right and left CeA neurons. Furthermore, we found that CGRP administration in the right CeA increased behavioral signs of bladder pain and decreased bladder pain-like behavior when administered in the left CeA. Conclusions These studies reveal a parabrachial-to-amygdala circuit driven by opposing actions of CGRP that determines hemispheric lateralization of visceral pain.
Nanotube-like processes facilitate material transfer between photoreceptors

EMBO reports

2021 Sep 08

Kalargyrou, AA;Basche, M;Hare, A;West, EL;Smith, AJ;Ali, RR;Pearson, RA;
PMID: 34494703 | DOI: 10.15252/embr.202153732

Neuronal communication is typically mediated via synapses and gap junctions. New forms of intercellular communication, including nanotubes (NTs) and extracellular vesicles (EVs), have been described for non-neuronal cells, but their role in neuronal communication is not known. Recently, transfer of cytoplasmic material between donor and host neurons ("material transfer") was shown to occur after photoreceptor transplantation. The cellular mechanism(s) underlying this surprising finding are unknown. Here, using transplantation, primary neuronal cultures and the generation of chimeric retinae, we show for the first time that mammalian photoreceptor neurons can form open-end NT-like processes. These processes permit the transfer of cytoplasmic and membrane-bound molecules in culture and after transplantation and can mediate gain-of-function in the acceptor cells. Rarely, organelles were also observed to transfer. Strikingly, use of chimeric retinae revealed that material transfer can occur between photoreceptors in the intact adult retina. Conversely, while photoreceptors are capable of releasing EVs, at least in culture, these are taken up by glia and not by retinal neurons. Our findings provide the first evidence of functional NT-like processes forming between sensory neurons in culture and in vivo.
Activity of Tachykinin1-expressing Pet1 raphe neurons modulates the drive to breathe.

J Neurosci.

2017 Jan 10

Hennessy ML, Corcoran A, Brust RD, Nattie EE, Dymecki S.
PMID: 28073937 | DOI: 10.1523/JNEUROSCI.2316-16.2016

Homeostatic control of breathing, heart rate, and body temperature relies on circuits within the brainstem modulated by the neurotransmitter serotonin (5-HT). Mounting evidence points to specialized neuronal subtypes within the 5-HT system, which have borne out in functional studies, including the modulation of distinct facets of homeostatic control. These functional differences, read out at the organismal level, are likely subserved by differences among 5-HT neuron subtypes at the cellular and molecular levels, including differences in the capacity to co-express other neurotransmitters such as glutamate, GABA, thyrotropin releasing hormone, and substance P encoded by the Tachykinin-1 (Tac1) gene. Here we characterize in mice a 5-HT neuron subtype identified by expression of Tac1 and the transcription factor gene Pet1, thus referred to as the Tac1-Pet1 neuron subtype. Transgenic cell labeling showed Tac1-Pet1 soma resident largely in the caudal medulla. Chemogenetic (CNO-hM4Di) perturbation of Tac1-Pet1 neuron activity resulted in blunting of the respiratory CO2 chemoreflex, which normally augments ventilation in response to hypercapnic acidosis to restore normal pH and PCO2 Tac1-Pet1 axonal boutons were found localized to brainstem areas implicated in respiratory modulation, with highest density in motor nuclei. These findings demonstrate that the activity of a Pet1 neuron subtype with potential to release both 5-HT and substance P is necessary for normal respiratory dynamics, likely via motor outputs that maintain airway patency and engage muscles of respiration. These Tac1-Pet1 neurons may complement the activity of Egr2-Pet1 neurons, previously established in respiratory chemoreception, but which do not innervate respiratory motor nuclei.

SIGNIFICANCE STATEMENT:

5-HT neurons modulate outputs as diverse as body temperature, respiration, aggression, and mood. We characterize a 5-HT neuron subtype defined by expression of Tachykinin1 and Pet1 (Tac1-Pet1 neurons) which projects to respiratory motor nuclei, and when silenced, blunts the ventilatory response to inhaled carbon dioxide. We employ genetic tools to access this subset of 5-HT neurons to query function, anatomy, and connectivity. Localization of synaptic boutons from Tac1-Pet1 neurons, primarily within motor regions, contrasts with those from previously described Egr2-Pet1 neurons, which are chemosensitive and reside in the raphe magnus and project primarily to chemosensory integration, but not motor, regions of the brainstem.

The Role of Dendritic Brain-Derived Neurotrophic Factor Transcripts on Altered Inhibitory Circuitry in Depression

Biological Psychiatry (2018)

2018 Oct 09

Oh H, Piantadosi SC, Rocco BR, Lewis DA, Watkins SC, Sibille E.
PMID: - | DOI: 10.1016/j.biopsych.2018.09.026

Abstract Background A parallel downregulation of brain-derived neurotrophic factor (BDNF) and somatostatin (SST), a marker of inhibitory γ-amino-butyric acid (GABA) interneurons which target pyramidal cell dendrites, has been reported in several brain areas of subjects with major depressive disorder (MDD), and rodent genetic studies suggests they are linked and both contribute to the illness. However, the mechanism by which they contribute to the pathophysiology of the illness has remained elusive. Methods With qPCR, we determined the expression level of BDNF transcript variants and synaptic markers in the prefrontal cortex (PFC) of MDD patients and matched controls (n=19/group) and of C57BL/6J mice exposed to chronic stress or control conditions (n=12/group). We next suppressed BDNF transcripts with long 3’ untranslated region (L-3’-UTR) using small hairpin RNA (shRNA) and investigated changes in cell morphology, gene expression and behavior. Results L-3’-UTR containing BDNF mRNAs, which migrate to distal dendrites of pyramidal neurons, are selectively reduced and highly correlated with SST expression in the PFC of MDD subjects. A similar downregulation occurs in mice submitted to chronic stress. We next show that Bdnf L-3’-UTR knockdown is sufficient to induce (i) dendritic shrinkage in cortical neurons, (ii) cell-specific MDD-like gene changes (including Sst downregulation), and (iii) depressive-/anxiety-like behaviors. The translational validity of the Bdnf L-3’-UTR shRNA-treated mice was confirmed by significant cross-species correlation of changes in MDD-associated gene expression. Conclusions These findings provide evidence for a novel MDD-related pathological mechanism linking local neurotrophic support, pyramidal cell structure, dendritic inhibition and mood regulation.
Circuit dissection of the role of somatostatin in itch and pain

Nat Neurosci.

2018 Mar 19

Huang J, Polgár E, Solinski HJ, Mishra SK, Tseng PY, Iwagaki N, Boyle KA, Dickie AC, Kriegbaum MC, Wildner H, Zeilhofer HU, Watanabe M, Riddell JS, Todd AJ, Hoon MA.
PMID: 29556030 | DOI: 10.1038/s41593-018-0119-z

Stimuli that elicit itch are detected by sensory neurons that innervate the skin. This information is processed by the spinal cord; however, the way in which this occurs is still poorly understood. Here we investigated the neuronal pathways for itch neurotransmission, particularly the contribution of the neuropeptide somatostatin. We find that in the periphery, somatostatin is exclusively expressed in Nppb+ neurons, and we demonstrate that Nppb+somatostatin+ cells function as pruriceptors. Employing chemogenetics, pharmacology and cell-specific ablation methods, we demonstrate that somatostatin potentiates itch by inhibiting inhibitory dynorphin neurons, which results in disinhibition of GRPR+neurons. Furthermore, elimination of somatostatin from primary afferents and/or from spinal interneurons demonstrates differential involvement of the peptide released from these sources in itch and pain. Our results define the neural circuit underlying somatostatin-induced itch and characterize a contrasting antinociceptive role for the peptide.

Functional Divergence of Delta and Mu Opioid Receptor Organization in CNS Pain Circuits

Neuron.

2018 Mar 22

Wang D, Tawfik VL, Corder G, Low SA, François A, Basbaum AI, Scherrer G.
PMID: 29576387 | DOI: 10.1016/j.neuron.2018.03.002

Cellular interactions between delta and mu opioid receptors (DORs and MORs), including heteromerization, are thought to regulate opioid analgesia. However, the identity of the nociceptive neurons in which such interactions could occur in vivo remains elusive. Here we show that DOR-MOR co-expression is limited to small populations of excitatory interneurons and projection neurons in the spinal cord dorsal horn and unexpectedly predominates in ventral horn motor circuits. Similarly, DOR-MOR co-expression is rare in parabrachial, amygdalar, and cortical brain regions processing nociceptive information. We further demonstrate that in the discrete DOR-MOR co-expressing nociceptive neurons, the two receptors internalize and function independently. Finally, conditional knockout experiments revealed that DORs selectively regulate mechanical pain by controlling the excitability of somatostatin-positive dorsal horn interneurons. Collectively, our results illuminate the functional organization of DORs and MORs in CNS pain circuits and reappraise the importance of DOR-MOR cellular interactions for developing novel opioid analgesics.

A whole-brain atlas of monosynaptic input targeting four different cell types in the medial prefrontal cortex of the mouse

Nat Neurosci

2019 Mar 18

Ahrlund-Richter S, Xuan Y, van Lunteren JA, Kim H, Ortiz C, Pollak Dorocic I, Meletis K and Carlen M
PMID: 30886408 | DOI: 10.1038/s41593-019-0354-y

The local and long-range connectivity of cortical neurons are considered instrumental to the functional repertoire of the cortical region in which they reside. In cortical networks, distinct cell types build local circuit structures enabling computational operations. Computations in the medial prefrontal cortex (mPFC) are thought to be central to cognitive operation, including decision-making and memory. We used a retrograde trans-synaptic rabies virus system to generate brain-wide maps of the input to excitatory neurons as well as three inhibitory interneuron subtypes in the mPFC. On the global scale the input patterns were found to be mainly cell type independent, with quantitative differences in key brain regions, including the basal forebrain. Mapping of the local mPFC network revealed high connectivity between the different subtypes of interneurons. The connectivity mapping gives insight into the information that the mPFC processes and the structural architecture underlying the mPFC's unique functions.
Cardiovascular baroreflex circuit moonlights in sleep control

Neuron

2022 Sep 23

Yao, Y;Barger, Z;Saffari Doost, M;Tso, CF;Darmohray, D;Silverman, D;Liu, D;Ma, C;Cetin, A;Yao, S;Zeng, H;Dan, Y;
PMID: 36170850 | DOI: 10.1016/j.neuron.2022.08.027

Sleep disturbances are strongly associated with cardiovascular diseases. Baroreflex, a basic cardiovascular regulation mechanism, is modulated by sleep-wake states. Here, we show that neurons at key stages of baroreflex pathways also promote sleep. Using activity-dependent genetic labeling, we tagged neurons in the nucleus of the solitary tract (NST) activated by blood pressure elevation and confirmed their barosensitivity with optrode recording and calcium imaging. Chemogenetic or optogenetic activation of these neurons promoted non-REM sleep in addition to decreasing blood pressure and heart rate. GABAergic neurons in the caudal ventrolateral medulla (CVLM)-a downstream target of the NST for vasomotor baroreflex-also promote non-REM sleep, partly by inhibiting the sympathoexcitatory and wake-promoting adrenergic neurons in the rostral ventrolateral medulla (RVLM). Cholinergic neurons in the nucleus ambiguous-a target of the NST for cardiac baroreflex-promoted non-REM sleep as well. Thus, key components of the cardiovascular baroreflex circuit are also integral to sleep-wake brain-state regulation.
Gene Signature of the Human Pancreatic ε-Cell.

Endocrinology. 2018 Oct 30.

2018 Oct 30

Dominguez Gutierrez G, Kim J, Lee AH, Tong J, Niu J, Gray S, Wei Y, Ding Y, Ni M, Adler C, Murphy AJ, Gromada J, Xin Y.
PMID: 30380031 | DOI: 10.1210/en.2018-00833

The ghrelin producing ε-cell represents the fifth endocrine cell type in human pancreatic islets. The abundance of ε-cells in adult pancreas is extremely low, which has hampered the investigation on the molecular pathways regulating the development and the function of this cell type. In this study, we explored the molecular features defining the function of pancreatic ε-cells isolated from adult non-diabetic donors using single-cell RNA sequencing technology. We focus on transcription factors, cell surface receptors and genes involved in metabolic pathways that contribute to regulation of cellular function. Furthermore, the genes that separate ε-cells from the other islet endocrine cell types are presented. This study expands prior knowledge about the genes important for the function of the ε-cell during development and provides a resource to interrogate the transcriptome of this rare human islet cell type.
Targeted delivery of antisense oligonucleotides to pancreatic β-cells.

Sci Adv. 2018 Oct 17;4(10):eaat3386.

2018 Oct 17

Ämmälä C, Drury WJ 3rd, Knerr L, Ahlstedt I, Stillemark-Billton P, Wennberg-Huldt C, Andersson EM, Valeur E, Jansson-Löfmark R, Janzén D, Sundström L, Meuller J, Claesson J, Andersson P, Johansson C, Lee RG, Prakash TP, Seth PP, Monia BP, Andersson S.
PMID: 30345352 | DOI: 10.1126/sciadv.aat3386

Antisense oligonucleotide (ASO) silencing of the expression of disease-associated genes is an attractive novel therapeutic approach, but treatments are limited by the ability to deliver ASOs to cells and tissues. Following systemic administration, ASOs preferentially accumulate in liver and kidney. Among the cell types refractory to ASO uptake is the pancreatic insulin-secreting β-cell. Here, we show that conjugation of ASOs to a ligand of the glucagon-like peptide-1 receptor (GLP1R) can productively deliver ASO cargo to pancreatic β-cells both in vitro and in vivo. Ligand-conjugated ASOs silenced target genes in pancreatic islets at doses that did not affect target gene expression in liver or other tissues, indicating enhanced tissue and cell type specificity. This finding has potential to broaden the use of ASO technology, opening up novel therapeutic opportunities, and presents an innovative approach for targeted delivery of ASOs to additional cell types.
Central Amygdala Prepronociceptin-Expressing Neurons Mediate Palatable Food Consumption and Reward.

Neuron

2019 Apr 24

Hardaway JA, Halladay LR, Mazzone CM, Pati D, Bloodgood DW, Kim M, Jensen J, DiBerto JF, Boyt KM, Shiddapur A, Erfani A, Hon OJ, Neira S, Stanhope CM, Sugam JA, Saddoris MP, Tipton G, McElligott Z, Jhou TC, Stuber GD, Bruchas MR, Bulik CM, Holmes A, Kash TL.
PMID: 31029403 | DOI: 10.1016/j.neuron.2019.03.037

Food palatability is one of many factors that drives food consumption, and the hedonic drive to feed is a key contributor to obesity and binge eating. In this study, we identified a population of prepronociceptin-expressing cells in the central amygdala (PnocCeA) that are activated by palatable food consumption. Ablation or chemogenetic inhibition of these cells reduces palatable food consumption. Additionally, ablation of PnocCeA cells reduces high-fat-diet-driven increases in bodyweight and adiposity. PnocCeA neurons project to the ventral bed nucleus of the stria terminalis (vBNST), parabrachial nucleus (PBN), and nucleus of the solitary tract (NTS), and activation of cell bodies in the central amygdala (CeA) or axons in the vBNST, PBN, and NTS produces reward behavior but did not promote feeding of palatable food. These data suggest that the PnocCeA network is necessary for promoting the reinforcing and rewarding properties of palatable food, but activation of this network itself is not sufficient to promote feeding.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?