Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (15)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (39) Apply TBD filter
  • Slc17a6 (28) Apply Slc17a6 filter
  • SLC32A1 (27) Apply SLC32A1 filter
  • vGlut2 (25) Apply vGlut2 filter
  • FOS (23) Apply FOS filter
  • Gad1 (22) Apply Gad1 filter
  • TH (22) Apply TH filter
  • tdTomato (22) Apply tdTomato filter
  • VGAT (20) Apply VGAT filter
  • Lgr5 (18) Apply Lgr5 filter
  • GFAP (17) Apply GFAP filter
  • Slc17a7 (17) Apply Slc17a7 filter
  • Axin2 (15) Apply Axin2 filter
  • DRD1 (15) Apply DRD1 filter
  • (-) Remove Sst filter Sst (15)
  • Gad2 (15) Apply Gad2 filter
  • DRD2 (14) Apply DRD2 filter
  • SARS-CoV-2 (14) Apply SARS-CoV-2 filter
  • Rbfox3 (13) Apply Rbfox3 filter
  • PVALB (12) Apply PVALB filter
  • PDGFRA (12) Apply PDGFRA filter
  • Chat (12) Apply Chat filter
  • Pomc (12) Apply Pomc filter
  • egfp (11) Apply egfp filter
  • GLI1 (11) Apply GLI1 filter
  • CCK (10) Apply CCK filter
  • AGRP (10) Apply AGRP filter
  • PECAM1 (10) Apply PECAM1 filter
  • Penk (10) Apply Penk filter
  • OPRM1 (10) Apply OPRM1 filter
  • ACTA2 (9) Apply ACTA2 filter
  • Trpv1 (9) Apply Trpv1 filter
  • Cre (9) Apply Cre filter
  • Tmem119 (9) Apply Tmem119 filter
  • Sox9 (8) Apply Sox9 filter
  • CALCA (8) Apply CALCA filter
  • GLP1R (8) Apply GLP1R filter
  • MKI67 (8) Apply MKI67 filter
  • LEPR (8) Apply LEPR filter
  • WNT2 (8) Apply WNT2 filter
  • Sftpc (8) Apply Sftpc filter
  • Olig2 (8) Apply Olig2 filter
  • CD68 (7) Apply CD68 filter
  • Wnt5a (7) Apply Wnt5a filter
  • Spp1 (7) Apply Spp1 filter
  • Aldh1l1 (7) Apply Aldh1l1 filter
  • Npy (7) Apply Npy filter
  • PPIB (7) Apply PPIB filter
  • Phox2b (7) Apply Phox2b filter
  • Aif1 (7) Apply Aif1 filter

Product

  • (-) Remove RNAscope Multiplex Fluorescent Assay filter RNAscope Multiplex Fluorescent Assay (15)

Research area

  • Neuroscience (15) Apply Neuroscience filter
  • Bioinformatics (1) Apply Bioinformatics filter
  • Cross Species Evolution (1) Apply Cross Species Evolution filter
  • Development (1) Apply Development filter
  • Evolution (1) Apply Evolution filter
  • Motor Behaviors (1) Apply Motor Behaviors filter
  • Social Trauma (1) Apply Social Trauma filter
  • Transcriptomics (1) Apply Transcriptomics filter

Category

  • Publications (15) Apply Publications filter
Molecular and cellular evolution of the amygdala across species analyzed by single-nucleus transcriptome profiling

Cell discovery

2023 Feb 14

Yu, B;Zhang, Q;Lin, L;Zhou, X;Ma, W;Wen, S;Li, C;Wang, W;Wu, Q;Wang, X;Li, XM;
PMID: 36788214 | DOI: 10.1038/s41421-022-00506-y

The amygdala, or an amygdala-like structure, is found in the brains of all vertebrates and plays a critical role in survival and reproduction. However, the cellular architecture of the amygdala and how it has evolved remain elusive. Here, we generated single-nucleus RNA-sequencing data for more than 200,000 cells in the amygdala of humans, macaques, mice, and chickens. Abundant neuronal cell types from different amygdala subnuclei were identified in all datasets. Cross-species analysis revealed that inhibitory neurons and inhibitory neuron-enriched subnuclei of the amygdala were well-conserved in cellular composition and marker gene expression, whereas excitatory neuron-enriched subnuclei were relatively divergent. Furthermore, LAMP5+ interneurons were much more abundant in primates, while DRD2+ inhibitory neurons and LAMP5+SATB2+ excitatory neurons were dominant in the human central amygdalar nucleus (CEA) and basolateral amygdalar complex (BLA), respectively. We also identified CEA-like neurons and their species-specific distribution patterns in chickens. This study highlights the extreme cell-type diversity in the amygdala and reveals the conservation and divergence of cell types and gene expression patterns across species that may contribute to species-specific adaptations.
Sox6 expression distinguishes dorsally and ventrally biased dopamine neurons in the substantia nigra with distinctive properties and embryonic origins

Cell reports

2021 Nov 09

Pereira Luppi, M;Azcorra, M;Caronia-Brown, G;Poulin, JF;Gaertner, Z;Gatica, S;Moreno-Ramos, OA;Nouri, N;Dubois, M;Ma, YC;Ramakrishnan, C;Fenno, L;Kim, YS;Deisseroth, K;Cicchetti, F;Dombeck, DA;Awatramani, R;
PMID: 34758317 | DOI: 10.1016/j.celrep.2021.109975

Dopamine (DA) neurons in the ventral tier of the substantia nigra pars compacta (SNc) degenerate prominently in Parkinson's disease, while those in the dorsal tier are relatively spared. Defining the molecular, functional, and developmental characteristics of each SNc tier is crucial to understand their distinct susceptibility. We demonstrate that Sox6 expression distinguishes ventrally and dorsally biased DA neuron populations in the SNc. The Sox6+ population in the ventral SNc includes an Aldh1a1+ subset and is enriched in gene pathways that underpin vulnerability. Sox6+ neurons project to the dorsal striatum and show activity correlated with acceleration. Sox6- neurons project to the medial, ventral, and caudal striatum and respond to rewards. Moreover, we show that this adult division is encoded early in development. Overall, our work demonstrates a dual origin of the SNc that results in DA neuron cohorts with distinct molecular profiles, projections, and functions.
Social trauma engages lateral septum circuitry to occlude social reward

Nature

2022 Nov 30

Li, L;Durand-de Cuttoli, R;Aubry, AV;Burnett, CJ;Cathomas, F;Parise, LF;Chan, KL;Morel, C;Yuan, C;Shimo, Y;Lin, HY;Wang, J;Russo, SJ;
PMID: 36450985 | DOI: 10.1038/s41586-022-05484-5

In humans, traumatic social experiences can contribute to psychiatric disorders1. It is suggested that social trauma impairs brain reward function such that social behaviour is no longer rewarding, leading to severe social avoidance2,3. In rodents, the chronic social defeat stress (CSDS) model has been used to understand the neurobiology underlying stress susceptibility versus resilience following social trauma, yet little is known regarding its impact on social reward4,5. Here we show that, following CSDS, a subset of male and female mice, termed susceptible (SUS), avoid social interaction with non-aggressive, same-sex juvenile C57BL/6J mice and do not develop context-dependent social reward following encounters with them. Non-social stressors have no effect on social reward in either sex. Next, using whole-brain Fos mapping, in vivo Ca2+ imaging and whole-cell recordings, we identified a population of stress/threat-responsive lateral septum neurotensin (NTLS) neurons that are activated by juvenile social interactions only in SUS mice, but not in resilient or unstressed control mice. Optogenetic or chemogenetic manipulation of NTLS neurons and their downstream connections modulates social interaction and social reward. Together, these data suggest that previously rewarding social targets are possibly perceived as social threats in SUS mice, resulting from hyperactive NTLS neurons that occlude social reward processing.
ARCGHR Neurons Regulate Muscle Glucose Uptake

Cells

2021 May 03

de Lima, JBM;Debarba, LK;Rupp, AC;Qi, N;Ubah, C;Khan, M;Didyuk, O;Ayyar, I;Koch, M;Sandoval, DA;Sadagurski, M;
PMID: 34063647 | DOI: 10.3390/cells10051093

The growth hormone receptor (GHR) is expressed in brain regions that are known to participate in the regulation of energy homeostasis and glucose metabolism. We generated a novel transgenic mouse line (GHRcre) to characterize GHR-expressing neurons specifically in the arcuate nucleus of the hypothalamus (ARC). Here, we demonstrate that ARCGHR+ neurons are co-localized with agouti-related peptide (AgRP), growth hormone releasing hormone (GHRH), and somatostatin neurons, which are activated by GH stimulation. Using the designer receptors exclusively activated by designer drugs (DREADD) technique to control the ARCGHR+ neuronal activity, we demonstrate that the activation of ARCGHR+ neurons elevates a respiratory exchange ratio (RER) under both fed and fasted conditions. However, while the activation of ARCGHR+ promotes feeding, under fasting conditions, the activation of ARCGHR+ neurons promotes glucose over fat utilization in the body. This effect was accompanied by significant improvements in glucose tolerance, and was specific to GHR+ versus GHRH+ neurons. The activation of ARCGHR+ neurons increased glucose turnover and whole-body glycolysis, as revealed by hyperinsulinemic-euglycemic clamp studies. Remarkably, the increased insulin sensitivity upon the activation of ARCGHR+ neurons was tissue-specific, as the insulin-stimulated glucose uptake was specifically elevated in the skeletal muscle, in parallel with the increased expression of muscle glycolytic genes. Overall, our results identify the GHR-expressing neuronal population in the ARC as a major regulator of glycolysis and muscle insulin sensitivity in vivo.
Transcriptional Activation, Deactivation and Rebound Patterns in Cortex, Hippocampus and Amygdala in Response to Ketamine Infusion in Rats

Frontiers in molecular neuroscience

2022 May 30

Kim, JJ;Sapio, MR;Vazquez, FA;Maric, D;Loydpierson, AJ;Ma, W;Zarate, CA;Iadarola, MJ;Mannes, AJ;
PMID: 35706427 | DOI: 10.3389/fnmol.2022.892345

Ketamine, an N-methyl-D-aspartate (NMDA)-receptor antagonist, is a recently revitalized treatment for pain and depression, yet its actions at the molecular level remain incompletely defined. In this molecular-pharmacological investigation in the rat, we used short- and longer-term infusions of high dose ketamine to stimulate neuronal transcription processes. We hypothesized that a progressively stronger modulation of neuronal gene networks would occur over time in cortical and limbic pathways. A continuous intravenous administration paradigm for ketamine was developed in rat consisting of short (1 h) and long duration (10 h, and 10 h + 24 h recovery) infusions of anesthetic concentrations to activate or inhibit gene transcription in a pharmacokinetically controlled fashion. Transcription was measured by RNA-Seq in three brain regions: frontal cortex, hippocampus, and amygdala. Cellular level gene localization was performed with multiplex fluorescent in situ hybridization. Induction of a shared transcriptional regulatory network occurred within 1 h in all three brain regions consisting of (a) genes involved in stimulus-transcription factor coupling that are induced during altered synaptic activity (immediate early genes, IEGs, such as c-Fos, 9-12 significant genes per brain region, p < 0.01 per gene) and (b) the Nrf2 oxidative stress-antioxidant response pathway downstream from glutamate signaling (Nuclear Factor Erythroid-Derived 2-Like 2) containing 12-25 increasing genes (p < 0.01) per brain region. By 10 h of infusion, the acute results were further reinforced and consisted of more and stronger gene alterations reflecting a sustained and accentuated ketamine modulation of regional excitation and plasticity. At the cellular level, in situ hybridization localized up-regulation of the plasticity-associated gene Bdnf, and the transcription factors Nr4a1 and Fos, in cortical layers III and V. After 24 h recovery, we observed overshoot of transcriptional processes rather than a smooth return to homeostasis suggesting an oscillation of plasticity occurs during the transition to a new phase of neuronal regulation. These data elucidate critical molecular regulatory actions during and downstream of ketamine administration that may contribute to the unique drug actions of this anesthetic agent. These molecular investigations point to pathways linked to therapeutically useful attributes of ketamine.
Sphingosine-1-phosphate receptor 1 agonist SEW2871 alters membrane properties of late-firing somatostatin expressing neurons in the central lateral amygdala

Neuropharmacology

2021 Nov 16

Mork, BE;Lamerand, SR;Zhou, S;Taylor, BK;Sheets, PL;
PMID: 34798130 | DOI: 10.1016/j.neuropharm.2021.108885

Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that mediates a wide spectrum of biological processes including apoptosis, immune response and inflammation. Here, we sought to understand how S1P signaling affects neuronal excitability in the central amygdala (CeA), which is a brain region associated with fear learning, aversive memory, and the affective dimension of pain. Because the G-protein coupled S1P receptor 1 (S1PR1) has been shown to be the primary mediator of S1P signaling, we utilized S1PR1 agonist SEW2871 and S1PR1 antagonist NIBR to determine a potential role of S1PR1 in altering the cellular physiology of neurons in the lateral division of the CeA (CeL) that share the neuronal lineage marker somatostatin (Sst). CeL-Sst neurons play a critical role in expression of conditioned fear and pain modulation. Here we used transgenic breeding strategies to identify fluorescently labeled CeL-Sst neurons for electrophysiological recordings. Using principal component analysis, we identified two primary subtypes of Sst neurons within the CeL in both male and female mice. We denoted the two types regular-firing (type A) and late-firing (type B) CeL-Sst neurons. In response to SEW2871 application, Type A neurons exhibited increased input resistance, while type B neurons displayed a depolarized resting membrane potential and voltage threshold, increased current threshold, and decreased voltage height. NIBR application had no effect on CeL Sst neurons, indicating the absence of tonic S1P-induced S1PR1. Our findings reveal subtypes of Sst neurons within the CeL that are uniquely affected by S1PR1 activation, which may have implications for how S1P alters supraspinal circuits.
Neuronal cell types, projections, and spatial organization of the central amygdala

iScience

2022 Dec 22

O'Leary, TP;Kendrick, RM;Bristow, BN;Sullivan, KE;Wang, L;Clements, J;Lemire, AL;Cembrowski, MS;
PMID: 36425768 | DOI: 10.1016/j.isci.2022.105497

The central amygdala (CEA) has been richly studied for interpreting function and behavior according to specific cell types and circuits. Such work has typically defined molecular cell types by classical inhibitory marker genes; consequently, whether marker-gene-defined cell types exhaustively cover the CEA and co-vary with connectivity remains unresolved. Here, we combined single-cell RNA sequencing, multiplexed fluorescent in situ hybridization, immunohistochemistry, and long-range projection mapping to derive a "bottom-up" understanding of CEA cell types. In doing so, we identify two major cell types, encompassing one-third of all CEA neurons, that have gone unresolved in previous studies. In spatially mapping these novel types, we identify a non-canonical CEA subdomain associated with Nr2f2 expression and uncover an Isl1-expressing medial cell type that accounts for many long-range CEA projections. Our results reveal new CEA organizational principles across cell types and spatial scales and provide a framework for future work examining cell-type-specific behavior and function.
mGlu1 potentiation enhances prelimbic somatostatin interneuron activity to rescue schizophrenia-like physiological and cognitive deficits

Cell reports

2021 Nov 02

Maksymetz, J;Byun, NE;Luessen, DJ;Li, B;Barry, RL;Gore, JC;Niswender, CM;Lindsley, CW;Joffe, ME;Conn, PJ;
PMID: 34731619 | DOI: 10.1016/j.celrep.2021.109950

Evidence for prefrontal cortical (PFC) GABAergic dysfunction is one of the most consistent findings in schizophrenia and may contribute to cognitive deficits. Recent studies suggest that the mGlu1 subtype of metabotropic glutamate receptor regulates cortical inhibition; however, understanding the mechanisms through which mGlu1 positive allosteric modulators (PAMs) regulate PFC microcircuit function and cognition is essential for advancing these potential therapeutics toward the clinic. We report a series of electrophysiology, optogenetic, pharmacological magnetic resonance imaging, and animal behavior studies demonstrating that activation of mGlu1 receptors increases inhibitory transmission in the prelimbic PFC by selective excitation of somatostatin-expressing interneurons (SST-INs). An mGlu1 PAM reverses cortical hyperactivity and concomitant cognitive deficits induced by N-methyl-d-aspartate (NMDA) receptor antagonists. Using in vivo optogenetics, we show that prelimbic SST-INs are necessary for mGlu1 PAM efficacy. Collectively, these findings suggest that mGlu1 PAMs could reverse cortical GABAergic deficits and exhibit efficacy in treating cognitive dysfunction in schizophrenia.
The relative contributions of cell-dependent cortical microcircuit aging to cognition and anxiety

Biological Psychiatry

2018 Oct 05

Shukla R, Prevot TD, French L, Isserlin R, Rocco BR, Banasr M, Bader GD, Sibille E.
PMID: - | DOI: 10.1016/j.celrep.2018.09.034

Background Aging is accompanied by altered thinking (cognition) and feeling (mood), functions that depend on information processing by brain cortical cell microcircuits. We hypothesized that age-associated long-term functional and biological changes are mediated by gene transcriptomic changes within neuronal cell-types forming cortical microcircuits, namely excitatory pyramidal cells (PYC) and inhibitory GABAergic neurons expressing vasoactive intestinal peptide (Vip), somatostatin (Sst) and parvalbumin (Pvalb). Methods To test this hypothesis, we assessed locomotor, anxiety-like and cognitive behavioral changes between young (2 months, n=9) and old (22 months, n=12) male C57BL/6 mice, and performed frontal cortex cell-type specific molecular profiling, using laser-capture microscopy and RNA sequencing. Results were analyzed by neuroinformatics and validated by fluorescent in situ hybridization. Results Old-mice displayed increased anxiety and reduced working memory. The four cell-types displayed distinct age-related transcriptomes and biological pathway profiles, affecting metabolic and cell signaling pathways, and selective markers of neuronal vulnerability (Ryr3), resilience (Oxr1), and mitochondrial dynamics (Opa1), suggesting high age-related vulnerability of PYCs, and variable degree of adaptation in GABAergic neurons. Correlations between gene expression and behaviors suggest that changes in cognition and anxiety associated with age are partly mediated by normal age-related cell changes, and that additional age-independent decreases in synaptic and signaling pathways, notably in PYC and SST-neurons further contribute to behavioral changes. Conclusions Our study demonstrates cell-dependent differential vulnerability and coordinated cell-specific cortical microcircuit molecular changes with age. Collectively, the results suggest intrinsic molecular links between aging, cognition and mood-related behaviors with SST-neurons contributing evenly to both behavioral conditions.

A neural circuit for excessive feeding driven by environmental context in mice

Nature neuroscience

2021 Jun 24

Mohammad, H;Senol, E;Graf, M;Lee, CY;Li, Q;Liu, Q;Yeo, XY;Wang, M;Laskaratos, A;Xu, F;Luo, SX;Jung, S;Augustine, GJ;Fu, Y;
PMID: 34168339 | DOI: 10.1038/s41593-021-00875-9

Despite notable genetic influences, obesity mainly results from the overconsumption of food, which arises from the interplay of physiological, cognitive and environmental factors. In patients with obesity, eating is determined more by external cues than by internal physiological needs. However, how environmental context drives non-homeostatic feeding is elusive. Here, we identify a population of somatostatin (TNSST) neurons in the mouse hypothalamic tuberal nucleus that are preferentially activated by palatable food. Activation of TNSST neurons enabled a context to drive non-homeostatic feeding in sated mice and required inputs from the subiculum. Pairing a context with palatable food greatly potentiated synaptic transmission between the subiculum and TNSST neurons and drove non-homeostatic feeding that could be selectively suppressed by inhibiting TNSST neurons or the subiculum but not other major orexigenic neurons. These results reveal how palatable food, through a specific hypothalamic circuit, empowers environmental context to drive non-homeostatic feeding.
Single-cell transcriptomic analysis reveals diversity within mammalian spinal motor neurons

Nature communications

2023 Jan 03

Liau, ES;Jin, S;Chen, YC;Liu, WS;Calon, M;Nedelec, S;Nie, Q;Chen, JA;
PMID: 36596814 | DOI: 10.1038/s41467-022-35574-x

Spinal motor neurons (MNs) integrate sensory stimuli and brain commands to generate movements. In vertebrates, the molecular identities of the cardinal MN types such as those innervating limb versus trunk muscles are well elucidated. Yet the identities of finer subtypes within these cell populations that innervate individual muscle groups remain enigmatic. Here we investigate heterogeneity in mouse MNs using single-cell transcriptomics. Among limb-innervating MNs, we reveal a diverse neuropeptide code for delineating putative motor pool identities. Additionally, we uncover that axial MNs are subdivided into three molecularly distinct subtypes, defined by mediolaterally-biased Satb2, Nr2f2 or Bcl11b expression patterns with different axon guidance signatures. These three subtypes are present in chicken and human embryos, suggesting a conserved axial MN expression pattern across higher vertebrates. Overall, our study provides a molecular resource of spinal MN types and paves the way towards deciphering how neuronal subtypes evolved to accommodate vertebrate motor behaviors.
Human prefrontal cortex gene regulatory dynamics from gestation to adulthood at single-cell resolution

Cell

2022 Oct 27

Herring, CA;Simmons, RK;Freytag, S;Poppe, D;Moffet, JJD;Pflueger, J;Buckberry, S;Vargas-Landin, DB;Clément, O;Echeverría, EG;Sutton, GJ;Alvarez-Franco, A;Hou, R;Pflueger, C;McDonald, K;Polo, JM;Forrest, ARR;Nowak, AK;Voineagu, I;Martelotto, L;Lister, R;
PMID: 36318921 | DOI: 10.1016/j.cell.2022.09.039

Human brain development is underpinned by cellular and molecular reconfigurations continuing into the third decade of life. To reveal cell dynamics orchestrating neural maturation, we profiled human prefrontal cortex gene expression and chromatin accessibility at single-cell resolution from gestation to adulthood. Integrative analyses define the dynamic trajectories of each cell type, revealing major gene expression reconfiguration at the prenatal-to-postnatal transition in all cell types followed by continuous reconfiguration into adulthood and identifying regulatory networks guiding cellular developmental programs, states, and functions. We uncover links between expression dynamics and developmental milestones, characterize the diverse timing of when cells acquire adult-like states, and identify molecular convergence from distinct developmental origins. We further reveal cellular dynamics and their regulators implicated in neurological disorders. Finally, using this reference, we benchmark cell identities and maturation states in organoid models. Together, this captures the dynamic regulatory landscape of human cortical development.

Pages

  • 1
  • 2
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?