Stenton, S;McPartland, J;Shukla, R;Turner, K;Marton, T;Hargitai, B;Bamber, A;Pryce, J;Peres, CL;Burguess, N;Wagner, B;Ciolka, B;Simmons, W;Hurrell, D;Sekar, T;Moldovan, C;Trayers, C;Bryant, V;Palm, L;Cohen, MC;
PMID: 35465646 | DOI: 10.1016/j.eclinm.2022.101389
Pregnant women with SARS-CoV-2 infection experience higher rates of stillbirth and preterm birth. A unique pattern of chronic histiocytic intervillositis (CHI) and/or massive perivillous fibrin deposition (MPFD) has emerged, coined as SARS-CoV-2 placentitis.The aim of this study was to describe a cohort of placentas diagnosed with SARS-CoV-2 placentitis during October 2020-March 2021. Cases with a histological diagnosis of SARS-CoV-2 placentitis and confirmatory immunohistochemistry were reported. Maternal demographic data, pregnancy outcomes and placental findings were collected.59 mothers delivered 61 infants with SARS-CoV-2 placentitis. The gestational age ranged from 19 to 41 weeks with most cases (78.6%) being third trimester. 30 infants (49.1%) were stillborn or late miscarriages. Obese mothers had higher rates of pregnancy loss when compared with those with a BMI <30 [67% (10/15) versus 41% (14/34)]. 47/59 (79.7%) mothers had a positive SARS-CoV-2 PCR test either at the time of labour or in the months before, of which 12 (25.5%) were reported to be asymptomatic. Ten reported only CHI, two cases showed MPFD only and in 48 placentas both CHI and MPFD was described.SARS-CoV2 placentitis is a distinct entity associated with increased risk of pregnancy loss, particularly in the third trimester. Women can be completely asymptomatic and still experience severe placentitis. Unlike 'classical' MPFD, placentas with SARS-CoV-2 are generally normal in size with adequate fetoplacental weight ratios. Further work should establish the significance of the timing of maternal SARS-CoV-2 infection and placentitis, the significance of SARS-CoV2 variants, and rates of vertical transmission associated with this pattern of placental inflammation.There was not funding associated with this study.
Liver histopathology in COVID-19 patients: A mono-Institutional series of liver biopsies and autopsy specimens
Pathology, research and practice
Fassan, M;Mescoli, C;Sbaraglia, M;Guzzardo, V;Russo, FP;Fabris, R;Trevenzoli, M;Pelizzaro, F;Cattelan, AM;Basso, C;Navalesi, P;Farinati, F;Vettor, R;Dei Tos, AP;
PMID: 33932720 | DOI: 10.1016/j.prp.2021.153451
Few studies have focused on COVID-19 patients' hepatic histopathological features. Many of the described morphological landscapes are non-specific and possibly due to other comorbidities or to Sars-CoV-2-related therapies. We describe the hepatic histopathological findings of 3 liver biopsies obtained from living COVID-19 patients in which active SARS-CoV-2 infection was molecularly confirmed and biopsied because of significant alterations of liver function tests and 25 livers analyzed during COVID-19-related autopsies. Main histopathological findings were (i) the absence of significant biliary tree or vascular damages, (ii) mild/absent lymphocytic hepatitis; (iii) activation of (pigmented) Kupffer cells, (iv) hepatocellular regenerative changes, (v) the presence of steatosis, (vi) sinusoidal ectasia, micro-thrombosis and acinar atrophy in autopsy specimens No viral particle actively infecting the hepatic or endothelial cells was detected at in situ hybridization. The morphological features observed within the hepatic parenchyma are not specific and should be considered as the result of an indirect insult resulting from the viral infection or the adopted therapeutic protocols.
Wlaschin JJ, Gluski JM, Nguyen E, Silberberg H, Thompson JH, Chesler AT, Le Pichon CE.
PMID: 29968565 | DOI: 10.7554/eLife.33910
Neuropathic pain resulting from nerve injury can become persistent and difficult to treat but the molecular signaling responsible for its development remains poorly described. Here, we identify the neuronal stress sensor dual leucine zipper kinase (DLK; Map3k12) as a key molecule controlling the maladaptive pathways that lead to pain following injury. Genetic or pharmacological inhibition of DLK reduces mechanical hypersensitivity in a mouse model of neuropathic pain. Furthermore, DLK inhibition also prevents the spinal cord microgliosis that results from nerve injury and arises distant from the injury site. These striking phenotypes result from the control by DLK of a transcriptional program in somatosensory neurons regulating the expression of numerous genes implicated in pain pathogenesis, including the immune gene Csf1. Thus, activation of DLK is an early event, or even the master regulator, controlling a wide variety of pathways downstream of nerve injury that ultimately lead to chronic pain.
Systematic analysis of SARS-CoV-2 infection of an ACE2-negative human airway cell
Puray-Chavez, M;LaPak, KM;Schrank, TP;Elliott, JL;Bhatt, DP;Agajanian, MJ;Jasuja, R;Lawson, DQ;Davis, K;Rothlauf, PW;Liu, Z;Jo, H;Lee, N;Tenneti, K;Eschbach, JE;Shema Mugisha, C;Cousins, EM;Cloer, EW;Vuong, HR;VanBlargan, LA;Bailey, AL;Gilchuk, P;Crowe, JE;Diamond, MS;Hayes, DN;Whelan, SPJ;Horani, A;Brody, SL;Goldfarb, D;Major, MB;Kutluay, SB;
PMID: 34214467 | DOI: 10.1016/j.celrep.2021.109364
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) variants govern transmissibility, responsiveness to vaccination, and disease severity. In a screen for new models of SARS-CoV-2 infection, we identify human H522 lung adenocarcinoma cells as naturally permissive to SARS-CoV-2 infection despite complete absence of angiotensin-converting enzyme 2 (ACE2) expression. Remarkably, H522 infection requires the E484D S variant; viruses expressing wild-type S are not infectious. Anti-S monoclonal antibodies differentially neutralize SARS-CoV-2 E484D S in H522 cells as compared to ACE2-expressing cells. Sera from vaccinated individuals block this alternative entry mechanism, whereas convalescent sera are less effective. Although the H522 receptor remains unknown, depletion of surface heparan sulfates block H522 infection. Temporally resolved transcriptomic and proteomic profiling reveal alterations in cell cycle and the antiviral host cell response, including MDA5-dependent activation of type I interferon signaling. These findings establish an alternative SARS-CoV-2 host cell receptor for the E484D SARS-CoV-2 variant, which may impact tropism of SARS-CoV-2 and consequently human disease pathogenesis.
Molecular Pathology Analysis of SARS-CoV-2 in Syncytiotrophoblast and Hofbauer Cells in Placenta from a Pregnant Woman and Fetus with COVID-19
Pathogens (Basel, Switzerland)
Morotti, D;Cadamuro, M;Rigoli, E;Sonzogni, A;Gianatti, A;Parolin, C;Patanè, L;Schwartz, DA;
PMID: 33920814 | DOI: 10.3390/pathogens10040479
A small number of neonates delivered to women with SARS-CoV-2 infection have been found to become infected through intrauterine transplacental transmission. These cases are associated with a group of unusual placental pathology abnormalities that include chronic histiocytic intervillositis, syncytiotrophoblast necrosis, and positivity of the syncytiotrophoblast for SARS-CoV-2 antigen or RNA. Hofbauer cells constitute a heterogeneous group of immunologically active macrophages that have been involved in transplacental infections that include such viral agents as Zika virus and human immunodeficiency virus. The role of Hofbauer cells in placental infection with SARS-CoV-2 and maternal-fetal transmission is unknown. This study uses molecular pathology techniques to evaluate the placenta from a neonate infected with SARS-CoV-2 via the transplacental route to determine whether Hofbauer cells have evidence of infection. We found that the placenta had chronic histiocytic intervillositis and syncytiotrophoblast necrosis, with the syncytiotrophoblast demonstrating intense positive staining for SARS-CoV-2. Immunohistochemistry using the macrophage marker CD163, SARS-CoV-2 nucleocapsid protein, and double staining for SARS-CoV-2 with RNAscope and anti-CD163 antibody, revealed that no demonstrable virus could be identified within Hofbauer cells, despite these cells closely approaching the basement membrane zone of the infected trophoblast. Unlike some other viruses, there was no evidence from this transmitting placenta for infection of Hofbauer cells with SARS-CoV-2.
Gajewski, T;Rouhani, S;Trujillo, J;Pyzer, A;Yu, J;Fessler, J;Cabanov, A;Higgs, E;Cron, K;Zha, Y;Lu, Y;Bloodworth, J;Abasiyanik, M;Okrah, S;Flood, B;Hatogai, K;Leung, M;Pezeshk, A;Kozloff, L;Reschke, R;Strohbehn, G;Chervin, CS;Kumar, M;Schrantz, S;Madariaga, ML;Beavis, K;Yeo, KT;Sweis, R;Segal, J;Tay, S;Izumchenko, E;Mueller, J;Chen, L;
PMID: 34845442 | DOI: 10.21203/rs.3.rs-1083825/v1
The mechanisms explaining progression to severe COVID-19 remain poorly understood. It has been proposed that immune system dysregulation/over-stimulation may be implicated, but it is not clear how such processes would lead to respiratory failure. We performed comprehensive multiparameter immune monitoring in a tightly controlled cohort of 128 COVID-19 patients, and used the ratio of oxygen saturation to fraction of inspired oxygen (SpO2 / FiO2) as a physiologic measure of disease severity. Machine learning algorithms integrating 139 parameters identified IL-6 and CCL2 as two factors predictive of severe disease, consistent with the therapeutic benefit observed with anti-IL6-R antibody treatment. However, transcripts encoding these cytokines were not detected among circulating immune cells. Rather, in situ analysis of lung specimens using RNAscope and immunofluorescent staining revealed that elevated IL-6 and CCL2 were dominantly produced by infected lung type II pneumocytes. Severe disease was not associated with higher viral load, deficient antibody responses, or dysfunctional T cell responses. These results refine our understanding of severe COVID-19 pathophysiology, indicating that aberrant cytokine production by infected lung epithelial cells is a major driver of immunopathology. We propose that these factors cause local immune regulation towards the benefit of the virus.
Zhao, Q;Yu, CD;Wang, R;Xu, QJ;Dai Pra, R;Zhang, L;Chang, RB;
PMID: 35296859 | DOI: 10.3760/cma.j.cn112151-20210719-00516
Interoception, the ability to timely and precisely sense changes inside the body, is critical for survival1-4. Vagal sensory neurons (VSNs) form an important body-to-brain connection, navigating visceral organs along the rostral-caudal axis of the body and crossing the surface-lumen axis of organs into appropriate tissue layers5,6. The brain can discriminate numerous body signals through VSNs, but the underlying coding strategy remains poorly understood. Here we show that VSNs code visceral organ, tissue layer and stimulus modality-three key features of an interoceptive signal-in different dimensions. Large-scale single-cell profiling of VSNs from seven major organs in mice using multiplexed projection barcodes reveals a 'visceral organ' dimension composed of differentially expressed gene modules that code organs along the body's rostral-caudal axis. We discover another 'tissue layer' dimension with gene modules that code the locations of VSN endings along the surface-lumen axis of organs. Using calcium-imaging-guided spatial transcriptomics, we show that VSNs are organized into functional units to sense similar stimuli across organs and tissue layers; this constitutes a third 'stimulus modality' dimension. The three independent feature-coding dimensions together specify many parallel VSN pathways in a combinatorial manner and facilitate the complex projection of VSNs in the brainstem. Our study highlights a multidimensional coding architecture of the mammalian vagal interoceptive system for effective signal communication.
Bewley, D;Lee, J;Popescu, O;Oviedo, A;
| DOI: 10.7759/cureus.20833
* Back * Academic Departments * Alabama College of Osteopathic ... [/channels/acom] * Annals of Simulation [/channels/simulation-archives] * Aurora Breast Health Proceedings [/channels/aurora] * Baylor Scott & White Medical Ce ... [/channels/bsw-neuro] * California Institute of Behavio ... [/channels/cibnp] * Contemporary Reviews in Neurolo ... [/channels/crnn] * Dalhousie Emergency Medicine [/channels/dalhousie-em] * FLAGSHIP: Medical Scholarly Pro ... [/channels/flagship] * Houston Methodist Neurosurgery [/channels/methodist-neuro] * Liberty Medicine Research Channel [/channels/lucom] * Marcus Neuroscience Institute [/channels/marcus-neuro] * Medicine-Pediatrics Academic Ch ... [/channels/med-peds] * Military Medical Simulation [/channels/military-medical-sim] * Modern Medical Educator [/channels/mme] * NB Social Pediatrics Research [/channels/nbspr] * NEMA Research Group [/channels/nema] * Paolo Procacci Foundation [/channels/ppf] * Penn State Neurosurgery [/channels/psuneuro] * Research Update Organization [/channels/researchupdate] * Sinai Chicago Research [/channels/scr] * Stanford Neurosurgery [/channels/su-neurosurgery] * The Florida Medical Student Res ... [/channels/fmsr] * UCSF Neurological Surgery [/channels/ucsf-neurosurgery] * UCSF Surgical Neuroanatomy Coll ... [/channels/sbcvl] * University of Florida-Jacksonvi ... [/channels/jax-neuro] * University of Louisville Neuros ... [/channels/ulneuro] * University of Munich Neurology [/channels/munich-neuro]
Favre, G;Mazzetti, S;Gengler, C;Bertelli, C;Schneider, J;Laubscher, B;Capoccia, R;Pakniyat, F;Ben Jazia, I;Eggel-Hort, B;de Leval, L;Pomar, L;Greub, G;Baud, D;Giannoni, E;
PMID: 34960786 | DOI: 10.3390/v13122517
Neonatal COVID-19 is rare and mainly results from postnatal transmission. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), however, can infect the placenta and compromise its function. We present two cases of decreased fetal movements and abnormal fetal heart rhythm 5 days after mild maternal COVID-19, requiring emergency caesarean section at 29 + 3 and 32 + 1 weeks of gestation, and leading to brain injury. Placental examination revealed extensive and multifocal chronic intervillositis, with intense cytoplasmic positivity for SARS-CoV-2 spike antibody and SARS-CoV-2 detection by RT-qPCR. Vertical transmission was confirmed in one case, and both neonates developed extensive cystic peri-ventricular leukomalacia.