ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Clin Cancer Res. Feb 1; 20(3):711–723.
Cheon DJ, Tong Y, Sim MS, Dering J, Berel D, Cui X, Lester J, Beach JA, Tighiouart M, Walts AE, Karlan BY, Orsulic S (2014).
PMID: 24218511 | DOI: 10.1158/1078-0432.CCR-13-1256.
Cancer Lett.
2016 Sep 05
Jia D, Liu Z, Deng N, Tan TZ, Huang RY, Taylor-Harding B, Cheon DJ, Lawrenson K, Wiedemeyer WR, Walts AE, Karlan BY, Orsulic S.
PMID: 27609069 | DOI: 10.1016/j.canlet.2016.09.001
Although cancer-associated fibroblasts (CAFs) are viewed as a promising therapeutic target, the design of rational therapy has been hampered by two key obstacles. First, attempts to ablate CAFs have resulted in significant toxicity because currently used biomarkers cannot effectively distinguish activated CAFs from non-cancer associated fibroblasts and mesenchymal progenitor cells. Second, it is unclear whether CAFs in different organs have different molecular and functional properties that necessitate organ-specific therapeutic designs. Our analyses uncovered COL11A1 as a highly specific biomarker of activated CAFs. Using COL11A1 as a 'seed', we identified co-expressed genes in 13 types of primary carcinoma in The Cancer Genome Atlas. We demonstrated that a molecular signature of activated CAFs is conserved in epithelial cancers regardless of organ site and transforming events within cancer cells, suggesting that targeting fibroblast activation should be effective in multiple cancers. We prioritized several potential pan-cancer therapeutic targets that are likely to have high specificity for activated CAFs and minimal toxicity in normal tissues.
J Dent Res.
2016 Mar 25
Zweifler LE, Ao M, Yadav M, Kuss P, Narisawa S, Kolli TN, Wimer HF, Farquharson C, Somerman MJ, Millán JL, Foster BL.
PMID: 27016531 | DOI: -
The tooth root and periodontal apparatus, including the acellular and cellular cementum, periodontal ligament (PDL), and alveolar bone, are critical for tooth function. Cementum and bone mineralization is regulated by factors including enzymes and extracellular matrix proteins that promote or inhibit hydroxyapatite crystal growth. Orphan Phosphatase 1 (Phospho1, PHOSPHO1) is a phosphatase expressed by chondrocytes, osteoblasts, and odontoblasts that functions in skeletal and dentin mineralization by initiating deposition of hydroxyapatite inside membrane-limited matrix vesicles. The role of PHOSPHO1 in periodontal formation remains unknown and we aimed to determine its functional importance in these tissues. We hypothesized that the enzyme would regulate proper mineralization of the periodontal apparatus. Spatiotemporal expression of PHOSPHO1 was mapped during periodontal development, andPhospho1-/-mice were analyzed using histology, immunohistochemistry, in situ hybridization, radiography, and micro-computed tomography. ThePhospho1gene and PHOSPHO1 protein were expressed by active alveolar bone osteoblasts and cementoblasts during cellular cementum formation. InPhospho1-/-mice, acellular cementum formation and mineralization were unaffected, whereas cellular cementum deposition increased although it displayed delayed mineralization and cementoid.Phospho1-/-mice featured disturbances in alveolar bone mineralization, shown by accumulation of unmineralized osteoid matrix and interglobular patterns of protein deposition. Parallel to other skeletal sites, deposition of mineral-regulating protein osteopontin (OPN) was increased in alveolar bone inPhospho1-/-mice. In contrast to the skeleton, genetic ablation ofSpp1, the gene encoding OPN, did not ameliorate dentoalveolar defects inPhospho1-/-mice. Despite alveolar bone mineralization defects, periodontal attachment and function appeared undisturbed inPhospho1-/-mice, with normal PDL architecture and no evidence of bone loss over time. This study highlights the role of PHOSPHO1 in mineralization of alveolar bone and cellular cementum, further revealing that acellular cementum formation is not substantially regulated by PHOSPHO1 and likely does not rely on matrix vesicle-mediated initiation of mineralization.
Cells
2022 Nov 25
Gertych, A;Walts, A;Cheng, K;Liu, M;John, J;Lester, J;Karlan, B;Orsulic, S;
| DOI: 10.3390/cells11233769
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com