ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Ecotoxicology and environmental safety
2023 Jun 29
Ji, R;Cui, M;Zhou, D;Pan, X;Xie, Y;Wu, X;Liang, X;Zhang, H;Song, W;
PMID: 37392660 | DOI: 10.1016/j.ecoenv.2023.115205
Nature neuroscience
2023 May 15
Calafate, S;Özturan, G;Thrupp, N;Vanderlinden, J;Santa-Marinha, L;Morais-Ribeiro, R;Ruggiero, A;Bozic, I;Rusterholz, T;Lorente-Echeverría, B;Dias, M;Chen, WT;Fiers, M;Lu, A;Vlaeminck, I;Creemers, E;Craessaerts, K;Vandenbempt, J;van Boekholdt, L;Poovathingal, S;Davie, K;Thal, DR;Wierda, K;Oliveira, TG;Slutsky, I;Adamantidis, A;De Strooper, B;de Wit, J;
PMID: 37188873 | DOI: 10.1038/s41593-023-01325-4
Proc Natl Acad Sci U S A.
2017 May 15
Budzillo A, Duffy A, Miller KE, Fairhall AL, Perkel DJ.
PMID: 28507134 | DOI: 10.1073/pnas.1611146114
Learning and maintenance of skilled movements require exploration of motor space and selection of appropriate actions. Vocal learning and social context-dependent plasticity in songbirds depend on a basal ganglia circuit, which actively generates vocal variability. Dopamine in the basal ganglia reduces trial-to-trial neural variability when the bird engages in courtship song. Here, we present evidence for a unique, tonically active, excitatory interneuron in the songbird basal ganglia that makes strong synaptic connections onto output pallidal neurons, often linked in time with inhibitory events. Dopamine receptor activity modulates the coupling of these excitatory and inhibitory events in vitro, which results in a dynamic change in the synchrony of a modeled population of basal ganglia output neurons receiving excitatory and inhibitory inputs. The excitatory interneuron thus serves as one biophysical mechanism for the introduction or modulation of neural variability in this circuit.
Biochemical pharmacology
2022 Feb 18
Kiguchi, N;Ding, H;Park, SH;Mabry, KM;Kishioka, S;Shiozawa, Y;Alfonso Romero-Sandoval, E;Peters, CM;Ko, MC;
PMID: 35189108 | DOI: 10.1016/j.bcp.2022.114972
Molecular Metabolism
2018 Mar 22
Lee SJ, Sanchez-Watts G, Krieger JP, Pignalosa A, Norell PN, Cortella A, Pettersen KG, Vrdoljak D, Hayes MR, Kanoski S, Langhans W, Watts AG.
PMID: - | DOI: 10.1016/j.molmet.2018.03.008
Abstract
Objective
Glucagon-like peptide-1 (GLP-1) neurons in the hindbrain densely innervate the dorsomedial hypothalamus (DMH), a nucleus strongly implicated in body weight regulation and the sympathetic control of brown adipose tissue (BAT) thermogenesis. Therefore, DMH GLP-1 receptors (GLP-1R) are well placed to regulate energy balance by controlling sympathetic outflow and BAT function.
Methods
We investigate this possibility in adult male rats by using direct administration of GLP-1 (0.5 ug) into the DMH, knocking down DMH GLP-1R mRNA with viral-mediated RNA interference, and by examining the neurochemical phenotype of GLP-1R expressing cells in the DMH using in situ hybridization.
Results
GLP-1 administered into the DMH increased BAT thermogenesis and hepatic triglyceride (TG) mobilization. On the other hand, Glp1r knockdown (KD) in the DMH increased body weight gain and adiposity, with a concomitant reduction in energy expenditure (EE), BAT temperature, and uncoupling protein 1 (UCP1) expression. Moreover, DMH Glp1r KD induced hepatic steatosis, increased plasma TG, and elevated liver specific de-novo lipogenesis, effects that collectively contributed to insulin resistance. Interestingly, DMH Glp1r KD increased neuropeptide Y (NPY) mRNA expression in the DMH. GLP-1R mRNA in the DMH, however, was found in GABAergic not NPY neurons, consistent with a GLP-1R-dependent inhibition of NPY neurons that is mediated by local GABAergic neurons. Finally, DMH Glp1r KD attenuated the anorexigenic effects of the GLP-1R agonist exendin-4, highlighting an important role of DMH GLP-1R signaling in GLP-1-based therapies.
Conclusions
Collectively, our data show that DMH GLP-1R signaling plays a key role for BAT thermogenesis and adiposity.
The Journal of comparative neurology
2023 May 21
Biancardi, V;Yang, X;Ding, X;Passi, D;Funk, GD;Pagliardini, S;
PMID: 37211631 | DOI: 10.1002/cne.25497
Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology
2021 Apr 16
Venkataraman, A;Hunter, SC;Dhinojwala, M;Ghebrezadik, D;Guo, J;Inoue, K;Young, LJ;Dias, BG;
PMID: 33864008 | DOI: 10.1038/s41386-021-01006-5
Front Cell Neurosci. 2018 Oct 9;12:341.
2018 Oct 09
Yoo T, Cho H, Lee J, Park H, Yoo YE, Yang E, Kim JY, Kim H, Kim E.
PMID: 30356810 | DOI: 10.3389/fncel.2018.00341
Immunity.
2018 Nov 21
Hammond TR, Dufort C, Dissing-Olesen L, Giera S, Young A, Wysoker A, Walker AJ, Gergits F, Segel M, Nemesh J, Marsh SE, Saunders A, Macosko E, Ginhoux F, Chen J, Franklin RJM, Piao X, McCarroll SA, Stevens B.
PMID: 30471926 | DOI: 10.1016/j.immuni.2018.11.004
Microglia, the resident immune cells of the brain, rapidly change states in response to their environment, but we lack molecular and functional signatures of different microglial populations. Here, we analyzed the RNA expression patterns of more than 76,000 individual microglia in mice during development, in old age, and after brain injury. Our analysis uncovered at least nine transcriptionally distinct microglial states, which expressed unique sets of genes and were localized in the brain using specific markers. The greatest microglial heterogeneity was found at young ages; however, several states-including chemokine-enriched inflammatory microglia-persisted throughout the lifespan or increased in the aged brain. Multiple reactive microglial subtypes were also found following demyelinating injury in mice, at least one of which was also found in human multiple sclerosis lesions. These distinct microglia signatures can be used to better understand microglia function and to identify and manipulate specific subpopulations in health and disease.
ILAR J.
2018 Nov 21
Himmel LE, Hackett TA, Moore JL, Adams WR, Thomas G, Novitskaya T, Caprioli RM, Zijlstra A, Mahadevan-Jansen A, Boyd KL.
PMID: 30462242 | DOI: 10.1093/ilar/ily004
For decades, histopathology with routine hematoxylin and eosin staining has been and remains the gold standard for reaching a morphologic diagnosis in tissue samples from humans and veterinary species. However, within the past decade, there has been exponential growth in advanced techniques for in situ tissue biomarker imaging that bridge the divide between anatomic and molecular pathology. It is now possible to simultaneously observe localization and expression magnitude of multiple protein, nucleic acid, and molecular targets in tissue sections and apply machine learning to synthesize vast, image-derived datasets. As these technologies become more sophisticated and widely available, a team-science approach involving subspecialists with medical, engineering, and physics backgrounds is critical to upholding quality and validity in studies generating these data. The purpose of this manuscript is to detail the scientific premise, tools and training, quality control, and data collection and analysis considerations needed for the most prominent advanced imaging technologies currently applied in tissue sections: immunofluorescence, in situ hybridization, laser capture microdissection, matrix-assisted laser desorption ionization imaging mass spectrometry, and spectroscopic/optical methods. We conclude with a brief overview of future directions for ex vivo and in vivo imaging techniques.
Communications biology
2022 Aug 18
Noh, YW;Yook, C;Kang, J;Lee, S;Kim, Y;Yang, E;Kim, H;Kim, E;
PMID: 35982261 | DOI: 10.1038/s42003-022-03813-y
Molecular therapy : the journal of the American Society of Gene Therapy
2022 May 05
Tadokoro, T;Bravo-Hernandez, M;Agashkov, K;Kobayashi, Y;Platoshyn, O;Navarro, M;Marsala, S;Miyanohara, A;Yoshizumi, T;Shigyo, M;Krotov, V;Juhas, S;Juhasova, J;Nguyen, D;Kupcova Skalnikova, H;Motlik, J;Studenovska, H;Proks, V;Reddy, R;Driscoll, SP;Glenn, TD;Kemthong, T;Malaivijitnond, S;Tomori, Z;Vanicky, I;Kakinohana, M;Pfaff, SL;Ciacci, J;Belan, P;Marsala, M;
PMID: 35524407 | DOI: 10.1016/j.ymthe.2022.04.023
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com