ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Nature
2023 Jun 01
Wang, X;Ramos, R;Phan, AQ;Yamaga, K;Flesher, JL;Jiang, S;Oh, JW;Jin, S;Jahid, S;Kuan, CH;Nguyen, TK;Liang, HY;Shettigar, NU;Hou, R;Tran, KH;Nguyen, A;Vu, KN;Phung, JL;Ingal, JP;Levitt, KM;Cao, X;Liu, Y;Deng, Z;Taguchi, N;Scarfone, VM;Wang, G;Paolilli, KN;Wang, X;Guerrero-Juarez, CF;Davis, RT;Greenberg, EN;Ruiz-Vega, R;Vasudeva, P;Murad, R;Widyastuti, LHP;Lee, HL;McElwee, KJ;Gadeau, AP;Lawson, DA;Andersen, B;Mortazavi, A;Yu, Z;Nie, Q;Kunisada, T;Karin, M;Tuckermann, J;Esko, JD;Ganesan, AK;Li, J;Plikus, MV;
PMID: 37344645 | DOI: 10.1038/s41586-023-06172-8
BMC Biol.
2019 Apr 11
Chandra L, Borcherding DC, Kingsbury D, Atherly T, Ambrosini YM, Bourgois-Mochel A, Yuan W, Kimber M, Qi Y, Wang Q, Wannemuehler M, Ellinwood NM, Snella E, Martin M, Skala M, Meyerholz D, Estes M, Fernandez-Zapico ME, Jergens AE, Mochel JP, Allenspach K.
PMID: 30975131 | DOI: 10.1186/s12915-019-0652-6
Abstract
BACKGROUND:
Large animal models, such as the dog, are increasingly being used for studying diseases including gastrointestinal (GI) disorders. Dogs share similar environmental, genomic, anatomical, and intestinal physiologic features with humans. To bridge the gap between commonly used animal models, such as rodents, and humans, and expand the translational potential of the dog model, we developed a three-dimensional (3D) canine GI organoid (enteroid and colonoid) system. Organoids have recently gained interest in translational research as this model system better recapitulates the physiological and molecular features of the tissue environment in comparison with two-dimensional cultures.
RESULTS:
Organoids were derived from tissue of more than 40 healthy dogs and dogs with GI conditions, including inflammatory bowel disease (IBD) and intestinal carcinomas. Adult intestinal stem cells (ISC) were isolated from whole jejunal tissue as well as endoscopically obtained duodenal, ileal, and colonic biopsy samples using an optimized culture protocol. Intestinal organoids were comprehensively characterized using histology, immunohistochemistry, RNA in situ hybridization, and transmission electron microscopy, to determine the extent to which they recapitulated the in vivo tissue characteristics. Physiological relevance of the enteroid system was defined using functional assays such as optical metabolic imaging (OMI), the cystic fibrosis transmembrane conductance regulator (CFTR) function assay, and Exosome-Like Vesicles (EV) uptake assay, as a basis for wider applications of this technology in basic, preclinical and translational GI research. We have furthermore created a collection of cryopreserved organoids to facilitate future research.
CONCLUSIONS:
We establish the canine GI organoid systems as a model to study naturally occurring intestinal diseases in dogs and humans, and that can be used for toxicology studies, for analysis of host-pathogen interactions, and for other translational applications.
Cellular & molecular immunology
2023 Jun 26
Silvin, A;Qian, J;Ginhoux, F;
PMID: 37365324 | DOI: 10.1038/s41423-023-01053-6
Bone Research
2018 Apr 06
Zuo C, Wang L, Kamalesh RM, Bowen Me, Moore DC, Dooner MS, Reginato AM, Wu Q, Schorl C, Song Y, Warman ML, Neel BG, Ehrlich MG, Yang W.
PMID: - | DOI: 10.1038/s41413-018-0013-z
Chondrocytes and osteoblasts differentiate from a common mesenchymal precursor, the osteochondroprogenitor (OCP), and help build the vertebrate skeleton. The signaling pathways that control lineage commitment for OCPs are incompletely understood. We asked whether the ubiquitously expressed protein-tyrosine phosphatase SHP2 (encoded by Ptpn11) affects skeletal lineage commitment by conditionally deleting Ptpn11 in mouse limb and head mesenchyme using “Cre-loxP”-mediated gene excision. SHP2-deficient mice have increased cartilage mass and deficient ossification, suggesting that SHP2-deficient OCPs become chondrocytes and not osteoblasts. Consistent with these observations, the expression of the master chondrogenic transcription factor SOX9 and its target genes Acan, Col2a1, and Col10a1 were increased in SHP2-deficient chondrocytes, as revealed by gene expression arrays, qRT-PCR, in situ hybridization, and immunostaining. Mechanistic studies demonstrate that SHP2 regulates OCP fate determination via the phosphorylation and SUMOylation of SOX9, mediated at least in part via the PKA signaling pathway. Our data indicate that SHP2 is critical for skeletal cell lineage differentiation and could thus be a pharmacologic target for bone and cartilage regeneration.
Nat Neurosci.
2018 Apr 23
Häring M, Zeisel A, Hochgerner H, Rinwa P, Jakobsson JET, Lönnerberg P, La Manno G, Sharma N, Borgius L, Kiehn O, Lagerström MC, Linnarsson S, Ernfors P.
PMID: 29686262 | DOI: 10.1038/s41593-018-0141-1
The dorsal horn of the spinal cord is critical to processing distinct modalities of noxious and innocuous sensation, but little is known of the neuronal subtypes involved, hampering efforts to deduce principles governing somatic sensation. Here we used single-cell RNA sequencing to classify sensory neurons in the mouse dorsal horn. We identified 15 inhibitory and 15 excitatory molecular subtypes of neurons, equaling the complexity in cerebral cortex. Validating our classification scheme in vivo and matching cell types to anatomy of the dorsal horn by spatial transcriptomics reveals laminar enrichment for each of the cell types. Neuron types, when combined, define a multilayered organization with like neurons layered together. Employing our scheme, we find that heat and cold stimuli activate discrete sets of both excitatory and inhibitory neuron types. This work provides a systematic and comprehensive molecular classification of spinal cord sensory neurons, enabling functional interrogation of sensory processing.
Neuron (2018)
2018 Dec 31
Li Q, Cheng Z, Zhou L, Darmanis S, Neff NF, Okamoto J, Gulati G, Bennett ML, Sun LO, Clarke LE, Marschallinger J, Yu G, Quake SR, Wyss-Coray T, Barres BA.
| DOI: 10.1016/j.neuron.2018.12.006
Developmental cell
2022 Jun 07
Hein, RFC;Wu, JH;Holloway, EM;Frum, T;Conchola, AS;Tsai, YH;Wu, A;Fine, AS;Miller, AJ;Szenker-Ravi, E;Yan, KS;Kuo, CJ;Glass, I;Reversade, B;Spence, JR;
PMID: 35679862 | DOI: 10.1016/j.devcel.2022.05.010
iScience
2021 Sep 01
Liu, S;Qin, D;Yan, Y;Wu, J;Meng, L;Huang, W;Wang, L;Chen, X;Zhang, L;
| DOI: 10.1016/j.isci.2021.103003
Nat Med.
2018 Sep 17
Zanconato F, Battilana G, Forcato M, Filippi L, Azzolin L, Manfrin A, Quaranta E, Di Biagio D, Sigismondo G, Guzzardo V, Lejeune P, Haendler B, Krijgsveld J, Fassan M, Bicciato S, Cordenonsi M, Piccolo S.
PMID: 30224758 | DOI: 10.1038/s41591-018-0158-8
Cancer cells rely on dysregulated gene expression. This establishes specific transcriptional addictions that may be therapeutically exploited. Yet, the mechanisms that are ultimately responsible for these addictions are poorly understood. Here, we investigated the transcriptional dependencies of transformed cells to the transcription factors YAP and TAZ. YAP/TAZ physically engage the general coactivator bromodomain-containing protein 4 (BRD4), dictating the genome-wide association of BRD4 to chromatin. YAP/TAZ flag a large set of enhancers with super-enhancer-like functional properties. YAP/TAZ-bound enhancers mediate the recruitment of BRD4 and RNA polymerase II at YAP/TAZ-regulated promoters, boosting the expression of a host of growth-regulating genes. Treatment with small-molecule inhibitors of BRD4 blunts YAP/TAZ pro-tumorigenic activity in several cell or tissue contexts, causes the regression of pre-established, YAP/TAZ-addicted neoplastic lesions and reverts drug resistance. This work sheds light on essential mediators, mechanisms and genome-wide regulatory elements that are responsible for transcriptional addiction in cancer and lays the groundwork for a rational use of BET inhibitors according to YAP/TAZ biology.
Stem Cell Reports.
2017 Jul 04
Li B, Dorrell C, Canaday PS, Pelz C, Haft A, Finegold M, Grompe M.
PMID: 28689996 | DOI: 10.1016/j.stemcr.2017.06.003
The biliary system plays an important role in several acquired and genetic disorders of the liver. We have previously shown that biliary duct epithelium contains cells giving rise to proliferative Lgr5+ organoids in vitro. However, it remained unknown whether all biliary cells or only a specific subset had this clonogenic activity. The cell surface protease ST14 was identified as a positive marker for the clonogenic subset of cholangiocytes and was used to separate clonogenic and non-clonogenic duct cells by fluorescence-activated cell sorting. Only ST14hi duct cells had the ability to generate organoids that could be serially passaged. The gene expression profiles of clonogenic and non-clonogenic duct cells were similar, but several hundred genes were differentially expressed. RNA fluorescence in situ hybridization showed that clonogenic duct cells are interspersed among regular biliary epithelium at a ∼1:3 ratio. We conclude that adult murine cholangiocytes can be subdivided into two populations differing in their proliferative capacity.
Cell stem cell
2022 Jun 15
Niec, RE;Chu, T;Schernthanner, M;Gur-Cohen, S;Hidalgo, L;Pasolli, HA;Luckett, KA;Wang, Z;Bhalla, SR;Cambuli, F;Kataru, RP;Ganesh, K;Mehrara, BJ;Pe'er, D;Fuchs, E;
PMID: 35728595 | DOI: 10.1016/j.stem.2022.05.007
Bone
2017 Dec 05
Foster BL, Ao M, Salmon CR, Chavez MB, Kolli TN, Tran AB, Chu EY, Kantovitz KR, Yadav M, Narisawa S, Millán JL, Nociti Jr FH, Somerman MJ.
PMID: - | DOI: 10.1016/j.bone.2017.12.004
The periodontal complex is essential for tooth attachment and function and includes the mineralized tissues, cementum and alveolar bone, separated by the unmineralized periodontal ligament (PDL). To gain insights into factors regulating cementum-PDL and bone-PDL borders and protecting against ectopic calcification within the PDL, we employed a proteomic approach to analyze PDL tissue from progressive ankylosis knock-out (Ank−/−) mice, featuring reduced PPi, rapid cementogenesis, and excessive acellular cementum. Using this approach, we identified the matrix protein osteopontin (Spp1/OPN) as an elevated factor of interest in Ank−/− mouse molar PDL. We studied the role of OPN in dental and periodontal development and function. During tooth development in wild-type (WT) mice, Spp1 mRNA was transiently expressed by cementoblasts and strongly by alveolar bone osteoblasts. Developmental analysis from 14 to 240 days postnatal (dpn) indicated normal histological structures in Spp1−/− comparable to WT control mice. Microcomputed tomography (micro-CT) analysis at 30 and 90 dpn revealed significantly increased volumes and tissue mineral densities of Spp1−/− mouse dentin and alveolar bone, while pulp and PDL volumes were decreased and tissue densities were increased. However, acellular cementum growth was unaltered in Spp1−/− mice. Quantitative PCR of periodontal-derived mRNA failed to identify potential local compensators influencing cementum in Spp1−/− vs. WT mice at 26 dpn. We genetically deleted Spp1 on the Ank−/− mouse background to determine whether increased Spp1/OPN was regulating periodontal tissues when the PDL space is challenged by hypercementosis in Ank−/− mice. Ank−/−; Spp1−/−double deficient mice did not exhibit greater hypercementosis than that in Ank−/− mice. Based on these data, we conclude that OPN has a non-redundant role regulating formation and mineralization of dentin and bone, influences tissue properties of PDL and pulp, but does not control acellular cementum apposition. These findings may inform therapies targeted at controlling soft tissue calcification.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com