Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (4638)
  • Kits & Accessories (58)
  • Support & Documents (0)
  • Publications (6996)
  • Image gallery (0)
Refine Probe List

Content for comparison

Species

  • Mouse (1142) Apply Mouse filter
  • Human (988) Apply Human filter
  • Other (359) Apply Other filter
  • Zebrafish (267) Apply Zebrafish filter
  • Human herpesvirus (99) Apply Human herpesvirus filter
  • Langat virus (65) Apply Langat virus filter
  • Powassan virus (64) Apply Powassan virus filter
  • Monkey (59) Apply Monkey filter
  • Cloning vector (38) Apply Cloning vector filter
  • Rhincodon typus (36) Apply Rhincodon typus filter
  • Pig (33) Apply Pig filter
  • Influenza virus (33) Apply Influenza virus filter
  • Lassa virus (33) Apply Lassa virus filter
  • synthetic construct (33) Apply synthetic construct filter
  • Hepacivirus (32) Apply Hepacivirus filter
  • Oryzias latipes (32) Apply Oryzias latipes filter
  • Gekko japonicus (32) Apply Gekko japonicus filter
  • Phocoenid herpesvirus (32) Apply Phocoenid herpesvirus filter
  • Newcastle disease virus (32) Apply Newcastle disease virus filter
  • Gadus morhua (32) Apply Gadus morhua filter
  • Measles virus (31) Apply Measles virus filter
  • Felis catus (27) Apply Felis catus filter
  • Astyanax mexicanus (21) Apply Astyanax mexicanus filter
  • Other virus (3) Apply Other virus filter

Gene

  • TBD (1413) Apply TBD filter
  • INS (192) Apply INS filter
  • dazl (178) Apply dazl filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • DISC1 (109) Apply DISC1 filter
  • Dmbt1 (109) Apply Dmbt1 filter
  • Hic1 (108) Apply Hic1 filter
  • NFKBIZ (91) Apply NFKBIZ filter
  • Gad1 (90) Apply Gad1 filter
  • Nfkb1 (80) Apply Nfkb1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • Ikbke (74) Apply Ikbke filter
  • FOS (73) Apply FOS filter
  • GREB1 (73) Apply GREB1 filter
  • NFKB2 (73) Apply NFKB2 filter
  • PRAME (72) Apply PRAME filter
  • PACSIN2 (72) Apply PACSIN2 filter
  • ALPP (71) Apply ALPP filter
  • Powassan (71) Apply Powassan filter
  • Langat (70) Apply Langat filter
  • 16SrRNA (69) Apply 16SrRNA filter
  • MACC1 (67) Apply MACC1 filter
  • Aim2 (66) Apply Aim2 filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • GEM (63) Apply GEM filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PACSIN3 (48) Apply PACSIN3 filter
  • RER1 (48) Apply RER1 filter
  • SPIDR (48) Apply SPIDR filter
  • SPRING1 (48) Apply SPRING1 filter
  • PVALB (47) Apply PVALB filter
  • BFSP1 (47) Apply BFSP1 filter
  • egfp (46) Apply egfp filter
  • DCC (46) Apply DCC filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • DLC1 (41) Apply DLC1 filter
  • Greb1l (40) Apply Greb1l filter
  • GFAP (39) Apply GFAP filter

Platform

  • Manual Assay RNAscope HiPlex (1466) Apply Manual Assay RNAscope HiPlex filter
  • Automated Assay for Leica Systems - RNAscope (496) Apply Automated Assay for Leica Systems - RNAscope filter
  • Manual Assay RNAscope (311) Apply Manual Assay RNAscope filter
  • Automated Assay for Ventana Systems - RNAscope (158) Apply Automated Assay for Ventana Systems - RNAscope filter
  • Manual Assay miRNAscope (41) Apply Manual Assay miRNAscope filter
  • Manual Assay BaseScope (40) Apply Manual Assay BaseScope filter
  • Automated Assay for Leica Systems - miRNAscope (27) Apply Automated Assay for Leica Systems - miRNAscope filter
  • Automated Assay for Leica Systems - BaseScope (19) Apply Automated Assay for Leica Systems - BaseScope filter
  • Automated Assay for Ventana System - BaseScope (19) Apply Automated Assay for Ventana System - BaseScope filter
  • Automated Assay for Ventana Systems - miRNAscope (10) Apply Automated Assay for Ventana Systems - miRNAscope filter

Channel

  • 1 (492) Apply 1 filter
  • 2 (443) Apply 2 filter
  • 3 (294) Apply 3 filter
  • 4 (286) Apply 4 filter
  • 6 (137) Apply 6 filter
  • 5 (99) Apply 5 filter

HiPlex Channel

  • T10 (245) Apply T10 filter
  • T1 (244) Apply T1 filter
  • T11 (244) Apply T11 filter
  • T12 (244) Apply T12 filter
  • T2 (237) Apply T2 filter
  • T4 (237) Apply T4 filter
  • T6 (237) Apply T6 filter
  • T7 (237) Apply T7 filter
  • T8 (237) Apply T8 filter
  • T3 (236) Apply T3 filter
  • T9 (236) Apply T9 filter
  • T5 (234) Apply T5 filter

Product

  • RNAscope Multiplex Fluorescent Assay (1023) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope (968) Apply RNAscope filter
  • RNAscope Fluorescent Multiplex Assay (720) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope 2.5 HD Red assay (695) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.0 Assay (497) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Brown Assay (292) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 LS Assay (191) Apply RNAscope 2.5 LS Assay filter
  • TBD (183) Apply TBD filter
  • RNAscope 2.5 HD Duplex (158) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (104) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope Multiplex Fluorescent v2 (96) Apply RNAscope Multiplex Fluorescent v2 filter
  • BASEscope Assay RED (90) Apply BASEscope Assay RED filter
  • RNAscope 2.5 VS Assay (85) Apply RNAscope 2.5 VS Assay filter
  • Basescope (53) Apply Basescope filter
  • RNAscope HiPlex v2 assay (30) Apply RNAscope HiPlex v2 assay filter
  • miRNAscope (26) Apply miRNAscope filter
  • DNAscope HD Duplex Reagent Kit (15) Apply DNAscope HD Duplex Reagent Kit filter
  • RNAscope 2.5 HD duplex reagent kit (12) Apply RNAscope 2.5 HD duplex reagent kit filter
  • BaseScope Duplex Assay (11) Apply BaseScope Duplex Assay filter
  • RNAscope Multiplex fluorescent reagent kit v2 (6) Apply RNAscope Multiplex fluorescent reagent kit v2 filter
  • RNAscope Fluorescent Multiplex Reagent kit (5) Apply RNAscope Fluorescent Multiplex Reagent kit filter
  • RNAscope ISH Probe High Risk HPV (5) Apply RNAscope ISH Probe High Risk HPV filter
  • CTCscope (4) Apply CTCscope filter
  • RNAscope 2.5 HD Reagent Kit (4) Apply RNAscope 2.5 HD Reagent Kit filter
  • RNAscope HiPlex12 Reagents Kit (3) Apply RNAscope HiPlex12 Reagents Kit filter
  • DNAscope Duplex Assay (2) Apply DNAscope Duplex Assay filter
  • RNAscope 2.5 HD Assay (2) Apply RNAscope 2.5 HD Assay filter
  • RNAscope 2.5 LS Assay - RED (2) Apply RNAscope 2.5 LS Assay - RED filter
  • RNAscope Multiplex Fluorescent Assay v2 (2) Apply RNAscope Multiplex Fluorescent Assay v2 filter
  • BOND RNAscope Brown Detection (1) Apply BOND RNAscope Brown Detection filter
  • HybEZ Hybridization System (1) Apply HybEZ Hybridization System filter
  • miRNAscope Assay Red (1) Apply miRNAscope Assay Red filter
  • RNA-Protein CO-Detection Ancillary Kit (1) Apply RNA-Protein CO-Detection Ancillary Kit filter
  • RNAscope 2.0 HD Assay - Chromogenic (1) Apply RNAscope 2.0 HD Assay - Chromogenic filter
  • RNAscope 2.5 HD- Red (1) Apply RNAscope 2.5 HD- Red filter
  • RNAscope 2.5 LS Reagent Kits (1) Apply RNAscope 2.5 LS Reagent Kits filter
  • RNAScope HiPlex assay (1) Apply RNAScope HiPlex assay filter
  • RNAscope HiPlex Image Registration Software (1) Apply RNAscope HiPlex Image Registration Software filter
  • RNAscope LS Multiplex Fluorescent Assay (1) Apply RNAscope LS Multiplex Fluorescent Assay filter
  • RNAscope Multiplex Fluorescent Reagent Kit V3 (1) Apply RNAscope Multiplex Fluorescent Reagent Kit V3 filter
  • RNAscope Multiplex Fluorescent Reagent Kit v4 (1) Apply RNAscope Multiplex Fluorescent Reagent Kit v4 filter
  • RNAscope Multiplex Fluorescent v1 (1) Apply RNAscope Multiplex Fluorescent v1 filter
  • RNAscope Target Retrieval Reagents (1) Apply RNAscope Target Retrieval Reagents filter

Research area

  • Neuroscience (1826) Apply Neuroscience filter
  • Cancer (1368) Apply Cancer filter
  • Development (494) Apply Development filter
  • Inflammation (466) Apply Inflammation filter
  • Other (406) Apply Other filter
  • Infectious Disease (405) Apply Infectious Disease filter
  • Stem Cells (254) Apply Stem Cells filter
  • Covid (232) Apply Covid filter
  • Infectious (218) Apply Infectious filter
  • HPV (186) Apply HPV filter
  • lncRNA (133) Apply lncRNA filter
  • Metabolism (90) Apply Metabolism filter
  • Developmental (83) Apply Developmental filter
  • Stem cell (76) Apply Stem cell filter
  • Immunotherapy (72) Apply Immunotherapy filter
  • Other: Methods (65) Apply Other: Methods filter
  • CGT (62) Apply CGT filter
  • HIV (62) Apply HIV filter
  • Pain (61) Apply Pain filter
  • diabetes (57) Apply diabetes filter
  • LncRNAs (44) Apply LncRNAs filter
  • Aging (43) Apply Aging filter
  • Other: Heart (39) Apply Other: Heart filter
  • Reproduction (36) Apply Reproduction filter
  • Endocrinology (33) Apply Endocrinology filter
  • Other: Metabolism (32) Apply Other: Metabolism filter
  • Obesity (29) Apply Obesity filter
  • Other: Lung (29) Apply Other: Lung filter
  • Behavior (27) Apply Behavior filter
  • Other: Kidney (27) Apply Other: Kidney filter
  • Alzheimer's Disease (26) Apply Alzheimer's Disease filter
  • Kidney (26) Apply Kidney filter
  • Bone (24) Apply Bone filter
  • Stress (21) Apply Stress filter
  • Skin (20) Apply Skin filter
  • Heart (19) Apply Heart filter
  • Liver (19) Apply Liver filter
  • Lung (19) Apply Lung filter
  • Other: Zoological Disease (19) Apply Other: Zoological Disease filter
  • Regeneration (19) Apply Regeneration filter
  • Psychiatry (17) Apply Psychiatry filter
  • behavioral (16) Apply behavioral filter
  • Fibrosis (16) Apply Fibrosis filter
  • Other: Endocrinology (16) Apply Other: Endocrinology filter
  • Other: Liver (16) Apply Other: Liver filter
  • Injury (15) Apply Injury filter
  • Other: Skin (15) Apply Other: Skin filter
  • Anxiety (14) Apply Anxiety filter
  • Memory (14) Apply Memory filter
  • Reproductive Biology (14) Apply Reproductive Biology filter

Product sub type

  • Target Probes (1030) Apply Target Probes filter
  • 38322 (8) Apply 38322 filter
  • Automated Assay 2.5: Leica System (7) Apply Automated Assay 2.5: Leica System filter
  • Control Probe - Automated Leica Multiplex (7) Apply Control Probe - Automated Leica Multiplex filter
  • Manual Assay RNAscope Multiplex (3) Apply Manual Assay RNAscope Multiplex filter
  • Automated Assay 2.5: Ventana System (3) Apply Automated Assay 2.5: Ventana System filter
  • Control Probe- Manual RNAscope Multiplex (3) Apply Control Probe- Manual RNAscope Multiplex filter
  • Control Probe- Manual RNAscope HiPlex (3) Apply Control Probe- Manual RNAscope HiPlex filter
  • Manual Assay RNAscope Brown (2) Apply Manual Assay RNAscope Brown filter
  • Manual Assay RNAscope Red (2) Apply Manual Assay RNAscope Red filter
  • Manual Assay RNAscope Duplex (2) Apply Manual Assay RNAscope Duplex filter
  • Manual Assay BaseScope Red (2) Apply Manual Assay BaseScope Red filter
  • Manual Assay miRNAscope Red (2) Apply Manual Assay miRNAscope Red filter
  • Manual Assay: Accessory Reagent (1) Apply Manual Assay: Accessory Reagent filter
  • IA: Other Accessories (1) Apply IA: Other Accessories filter
  • Control Probe - Manual BaseScope Singleplex (1) Apply Control Probe - Manual BaseScope Singleplex filter
  • Control Probe - Automated Leica (1) Apply Control Probe - Automated Leica filter
  • Control Probe - LS BaseScope Singleplex (1) Apply Control Probe - LS BaseScope Singleplex filter
  • IA: Other (1) Apply IA: Other filter
  • Control Probe - VS BaseScope Singleplex (1) Apply Control Probe - VS BaseScope Singleplex filter
  • miRNAscope Automated Assay: Leica System (1) Apply miRNAscope Automated Assay: Leica System filter

Sample Compatibility

  • Cell pellets (22) Apply Cell pellets filter
  • FFPE (22) Apply FFPE filter
  • TMA (16) Apply TMA filter
  • Fixed frozen tissue (14) Apply Fixed frozen tissue filter
  • Adherent cells (13) Apply Adherent cells filter
  • Fresh frozen tissue (9) Apply Fresh frozen tissue filter
  • Cell Cultures (9) Apply Cell Cultures filter
  • TMA(Tissue Microarray) (6) Apply TMA(Tissue Microarray) filter
  • Freshfrozen tissue (5) Apply Freshfrozen tissue filter
  • FFPE,Freshfrozen tissue,Fixed frozen tissue,TMA,Cell pellets,Adherent cells (5) Apply FFPE,Freshfrozen tissue,Fixed frozen tissue,TMA,Cell pellets,Adherent cells filter
  • CTC (3) Apply CTC filter
  • PBMC's (3) Apply PBMC's filter

Category

  • Publications (6996) Apply Publications filter

Application

  • Cancer (620) Apply Cancer filter
  • Cancer, Neuroscience (331) Apply Cancer, Neuroscience filter
  • Neuroscience (176) Apply Neuroscience filter
  • Non-coding RNA (126) Apply Non-coding RNA filter
  • Cancer, Inflammation, Neuroscience, Stem Cell (60) Apply Cancer, Inflammation, Neuroscience, Stem Cell filter
  • Cancer, Inflammation (31) Apply Cancer, Inflammation filter
  • Inflammation (26) Apply Inflammation filter
  • 1442 (24) Apply 1442 filter
  • Stem Cell (20) Apply Stem Cell filter
  • 20 (8) Apply 20 filter
  • Cancer,Neuroscience (4) Apply Cancer,Neuroscience filter
  • Cancer,Inflammation,Neuroscience,Stem Cell (1) Apply Cancer,Inflammation,Neuroscience,Stem Cell filter
Prognostic value and cost benefit of HPV testing for oropharyngeal cancer patients

Oral diseases

2021 Jun 15

Lu, XJD;Liu, KYP;Prisman, E;Wu, J;Zhu, YS;Poh, C;
PMID: 34129700 | DOI: 10.1111/odi.13938

High-risk human papillomavirus (HR-HPV) can cause oropharyngeal squamous cell carcinoma (OpSCC). The revised 8th edition of the AJCC Staging Manual now stages OpSCC by incorporating p16 immunohistochemistry (IHC), the surrogate marker for HPV status. This study assessed the prognostic values of p16 and HPV markers.We identified 244 OpSCC patients diagnosed between 2000-2008 from the British Columbia Cancer Registry with enough tissue to conduct experiments. Formalin-fixed, paraffin-embedded tissue sections were stained for p16 IHC, RNA in situ hybridization (ISH) HPV 16 and 18, and DNA ISH HR-HPV. Electronic charts were reviewed to collect clinical and outcome data. Combined positive RNA and/or DNA ISH was used to denote HPV status.HPV was positive among 77.9% of samples. Using HPV as the benchmark, p16 IHC had high sensitivity (90.5%), but low specificity (68.5%). Distinct subgroups of patients were identified by sequential separation of p16 then HPV status. Among both p16-positive and p16-negative groups, HPV-positive patients were younger, more males, and had better clinical outcomes, especially 5-year overall survival. We further evaluated the technical costs associated with HPV testing.HPV is more prognostic than p16 for OpSCC. Clinical laboratories can adopt HPV RNA ISH for routine analysis.This article is protected by
Hypoxia-induced lncHILAR promotes renal cancer cell invasion and metastasis via ceRNA for the miR-613/206/1-1-3p/Jagged-1/Notch/CXCR4 signaling pathway

Molecular therapy : the journal of the American Society of Gene Therapy

2021 May 28

Hu, G;Ma, J;Zhang, J;Chen, Y;Liu, H;Huang, Y;Zheng, J;Xu, Y;Xue, W;Zhai, W;
PMID: 34058384 | DOI: 10.1016/j.ymthe.2021.05.020

Hypoxia has been identified as a common driving factor that contributes to tumor progression, including invasion and metastasis. However, the underlying mechanisms of enhanced invasion and metastasis under hypoxia remain unclear. A hypoxic microenvironment promoted invasion and metastasis of RCC by upregulating the expression of LOC100506178, which we named Hypoxia-Induced lncRNA Associated with Renal Cell Carcinoma (lncHILAR). Knockdown of lncHILAR inhibited cell invasion and migration while overexpression of lncHILAR conversely facilitated cell invasion and migration of RCC cells. Notably, hypoxic RCC cells secreted exosomes packaged with lncHILAR which were taken up by normoxic RCC cells and then drove normoxic cell invasion. Mechanistically, hypoxia-induced-lncHILAR elevated RCC invasion and metastasis by acting as a competing endogenous (ce)RNA for miR-613/206/1-1-3p, which led to the upregulation of Jagged-1 and C-X-C Motif Chemokine Receptor 4 (CXCR4). Activation of the of Jagged-1/Notch/CXCR4 axis induced RCC metastasis. Hypoxia-induced lncHILAR promotes RCC cell invasion and metastasis via ceRNA for the miR-613/206/1-1-3p/Jagged-1/Notch/CXCR4 axis. The novel lncHILAR may thus serve as a potential biomarker and therapeutic target in RCC.
Gut-brain communication by distinct sensory neurons differently controls feeding and glucose metabolism

Cell metabolism

2021 May 21

Borgmann, D;Ciglieri, E;Biglari, N;Brandt, C;Cremer, AL;Backes, H;Tittgemeyer, M;Wunderlich, FT;Brüning, JC;Fenselau, H;
PMID: 34043943 | DOI: 10.1016/j.cmet.2021.05.002

Sensory neurons relay gut-derived signals to the brain, yet the molecular and functional organization of distinct populations remains unclear. Here, we employed intersectional genetic manipulations to probe the feeding and glucoregulatory function of distinct sensory neurons. We reconstruct the gut innervation patterns of numerous molecularly defined vagal and spinal afferents and identify their downstream brain targets. Bidirectional chemogenetic manipulations, coupled with behavioral and circuit mapping analysis, demonstrated that gut-innervating, glucagon-like peptide 1 receptor (GLP1R)-expressing vagal afferents relay anorexigenic signals to parabrachial nucleus neurons that control meal termination. Moreover, GLP1R vagal afferent activation improves glucose tolerance, and their inhibition elevates blood glucose levels independent of food intake. In contrast, gut-innervating, GPR65-expressing vagal afferent stimulation increases hepatic glucose production and activates parabrachial neurons that control normoglycemia, but they are dispensable for feeding regulation. Thus, distinct gut-innervating sensory neurons differentially control feeding and glucoregulatory neurocircuits and may provide specific targets for metabolic control.
Charting human development using a multi-endodermal organ atlas and organoid models

Cell

2021 May 17

Yu, Q;Kilik, U;Holloway, EM;Tsai, YH;Harmel, C;Wu, A;Wu, JH;Czerwinski, M;Childs, CJ;He, Z;Capeling, MM;Huang, S;Glass, IA;Higgins, PDR;Treutlein, B;Spence, JR;Camp, JG;
PMID: 34019796 | DOI: 10.1016/j.cell.2021.04.028

Organs are composed of diverse cell types that traverse transient states during organogenesis. To interrogate this diversity during human development, we generate a single-cell transcriptome atlas from multiple developing endodermal organs of the respiratory and gastrointestinal tract. We illuminate cell states, transcription factors, and organ-specific epithelial stem cell and mesenchyme interactions across lineages. We implement the atlas as a high-dimensional search space to benchmark human pluripotent stem cell (hPSC)-derived intestinal organoids (HIOs) under multiple culture conditions. We show that HIOs recapitulate reference cell states and use HIOs to reconstruct the molecular dynamics of intestinal epithelium and mesenchyme emergence. We show that the mesenchyme-derived niche cue NRG1 enhances intestinal stem cell maturation in vitro and that the homeobox transcription factor CDX2 is required for regionalization of intestinal epithelium and mesenchyme in humans. This work combines cell atlases and organoid technologies to understand how human organ development is orchestrated.
A distinct parabrachial-to-lateral hypothalamus circuit for motivational suppression of feeding by nociception

Science advances

2021 May 01

Phua, SC;Tan, YL;Kok, AMY;Senol, E;Chiam, CJH;Lee, CY;Peng, Y;Lim, ATJ;Mohammad, H;Lim, JX;Fu, Y;
PMID: 33962958 | DOI: 10.1126/sciadv.abe4323

The motivation to eat is not only shaped by nutrition but also competed by external stimuli including pain. How the mouse hypothalamus, the feeding regulation center, integrates nociceptive inputs to modulate feeding is unclear. Within the key nociception relay center parabrachial nucleus (PBN), we demonstrated that neurons projecting to the lateral hypothalamus (LHPBN) are nociceptive yet distinct from danger-encoding central amygdala-projecting (CeAPBN) neurons. Activation of LHPBN strongly suppressed feeding by limiting eating frequency and also reduced motivation to work for food reward. Refined approach-avoidance paradigm revealed that suppression of LHPBN, but not CeAPBN, sustained motivation to obtain food. The effect of LHPBN neurons on feeding was reversed by suppressing downstream LHVGluT2 neurons. Thus, distinct from a circuit for fear and escape responses, LHPBN neurons channel nociceptive signals to LHVGluT2 neurons to suppress motivational drive for feeding. Our study provides a new perspective in understanding feeding regulation by external competing stimuli.
Lateral ventral tegmental area GABAergic and glutamatergic modulation of conditioned learning

Cell reports

2021 Mar 16

Rizzi, G;Li, Z;Hogrefe, N;Tan, KR;
PMID: 33730568 | DOI: 10.1016/j.celrep.2021.108867

The firing activity of dorso-medial-striatal-cholinergic interneurons (dmCINs) is a neural correlate of classical conditioning. Tonically active, they pause in response to salient stimuli, mediating acquisition of predictive cues/outcome associations. Cortical and thalamic inputs are typical of the rather limited knowledge about underlying circuitry contributing to this function. Here, we dissect the midbrain GABA and glutamate-to-dmCIN pathways and evaluate how they influence conditioned behavior. We report that midbrain neurons discriminate auditory cues and encode the association of a predictive stimulus with a footshock. Furthermore, GABA and glutamate cells form selective monosynaptic contacts onto dmCINs and di-synaptic ones via the parafascicular thalamus. Pathway-specific inhibition of each sub-circuit produces differential impairments of fear-conditioned learning. Finally, Vglut2-expressing cells discriminate between CSs although Vgat-positive neurons associate the predictive cue with the outcome. Overall, these data suggest that each component of the network carries information pertinent to sub-domains of the behavioral strategy.
Single cell transcriptomics of primate sensory neurons identifies cell types associated with chronic pain

Nature communications

2021 Mar 08

Kupari, J;Usoskin, D;Parisien, M;Lou, D;Hu, Y;Fatt, M;Lönnerberg, P;Spångberg, M;Eriksson, B;Barkas, N;Kharchenko, PV;Loré, K;Khoury, S;Diatchenko, L;Ernfors, P;
PMID: 33686078 | DOI: 10.1038/s41467-021-21725-z

Distinct types of dorsal root ganglion sensory neurons may have unique contributions to chronic pain. Identification of primate sensory neuron types is critical for understanding the cellular origin and heritability of chronic pain. However, molecular insights into the primate sensory neurons are missing. Here we classify non-human primate dorsal root ganglion sensory neurons based on their transcriptome and map human pain heritability to neuronal types. First, we identified cell correlates between two major datasets for mouse sensory neuron types. Machine learning exposes an overall cross-species conservation of somatosensory neurons between primate and mouse, although with differences at individual gene level, highlighting the importance of primate data for clinical translation. We map genomic loci associated with chronic pain in human onto primate sensory neuron types to identify the cellular origin of chronic pain. Genome-wide associations for chronic pain converge on two different neuronal types distributed between pain disorders that display different genetic susceptibilities, suggesting both unique and shared mechanisms between different pain conditions.
MAP3K2-regulated intestinal stromal cells define a distinct stem cell niche

Nature

2021 Mar 03

Wu, N;Sun, H;Zhao, X;Zhang, Y;Tan, J;Qi, Y;Wang, Q;Ng, M;Liu, Z;He, L;Niu, X;Chen, L;Liu, Z;Li, HB;Zeng, YA;Roulis, M;Liu, D;Cheng, J;Zhou, B;Ng, LG;Zou, D;Ye, Y;Flavell, RA;Ginhoux, F;Su, B;
PMID: 33658717 | DOI: 10.1038/s41586-021-03283-y

Intestinal stromal cells are known to modulate the propagation and differentiation of intestinal stem cells1,2. However, the precise cellular and molecular mechanisms by which this diverse stromal cell population maintains tissue homeostasis and repair are poorly understood. Here we describe a subset of intestinal stromal cells, named MAP3K2-regulated intestinal stromal cells (MRISCs), and show that they are the primary cellular source of the WNT agonist R-spondin 1 following intestinal injury in mice. MRISCs, which are epigenetically and transcriptomically distinct from subsets of intestinal stromal cells that have previously been reported3-6, are strategically localized at the bases of colon crypts, and function to maintain LGR5+ intestinal stem cells and protect against acute intestinal damage through enhanced R-spondin 1 production. Mechanistically, this MAP3K2 specific function is mediated by a previously unknown reactive oxygen species (ROS)-MAP3K2-ERK5-KLF2 axis to enhance production of R-spondin 1. Our results identify MRISCs as a key component of an intestinal stem cell niche that specifically depends on MAP3K2 to augment WNT signalling for the regeneration of damaged intestine.
Tumor to normal single-cell mRNA comparisons reveal a pan-neuroblastoma cancer cell

Science advances

2021 Feb 01

Kildisiute, G;Kholosy, WM;Young, MD;Roberts, K;Elmentaite, R;van Hooff, SR;Pacyna, CN;Khabirova, E;Piapi, A;Thevanesan, C;Bugallo-Blanco, E;Burke, C;Mamanova, L;Keller, KM;Langenberg-Ververgaert, KPS;Lijnzaad, P;Margaritis, T;Holstege, FCP;Tas, ML;Wijnen, MHWA;van Noesel, MM;Del Valle, I;Barone, G;van der Linden, R;Duncan, C;Anderson, J;Achermann, JC;Haniffa, M;Teichmann, SA;Rampling, D;Sebire, NJ;He, X;de Krijger, RR;Barker, RA;Meyer, KB;Bayraktar, O;Straathof, K;Molenaar, JJ;Behjati, S;
PMID: 33547074 | DOI: 10.1126/sciadv.abd3311

Neuroblastoma is a childhood cancer that resembles developmental stages of the neural crest. It is not established what developmental processes neuroblastoma cancer cells represent. Here, we sought to reveal the phenotype of neuroblastoma cancer cells by comparing cancer (n = 19,723) with normal fetal adrenal single-cell transcriptomes (n = 57,972). Our principal finding was that the neuroblastoma cancer cell resembled fetal sympathoblasts, but no other fetal adrenal cell type. The sympathoblastic state was a universal feature of neuroblastoma cells, transcending cell cluster diversity, individual patients, and clinical phenotypes. We substantiated our findings in 650 neuroblastoma bulk transcriptomes and by integrating canonical features of the neuroblastoma genome with transcriptional signals. Overall, our observations indicate that a pan-neuroblastoma cancer cell state exists, which may be attractive for novel immunotherapeutic and targeted avenues.
CRISPR Systems for COVID-19 Diagnosis

ACS sensors

2021 Jan 27

Rahimi, H;Salehiabar, M;Barsbay, M;Ghaffarlou, M;Kavetskyy, T;Sharafi, A;Davaran, S;Chauhan, SC;Danafar, H;Kaboli, S;Nosrati, H;Yallapu, MM;Conde, J;
PMID: 33502175 | DOI: 10.1021/acssensors.0c02312

The emergence of the new coronavirus 2019 (COVID-19) was first seen in December 2019, which has spread rapidly and become a global pandemic. The number of cases of COVID-19 and its associated mortality have raised serious concerns worldwide. Early diagnosis of viral infection undoubtedly allows rapid intervention, disease management, and substantial control of the rapid spread of the disease. Currently, the standard approach for COVID-19 diagnosis globally is the RT-qPCR test; however, the limited access to kits and associated reagents, the need for specialized lab equipment, and the need for highly skilled personnel has led to a detection slowdown. Recently, the development of clustered regularly interspaced short palindromic repeats (CRISPR)-based diagnostic systems has reshaped molecular diagnosis. The benefits of the CRISPR system such as speed, precision, specificity, strength, efficiency, and versatility have inspired researchers to develop CRISPR-based diagnostic and therapeutic methods. With the global COVID-19 outbreak, different groups have begun to design and develop diagnostic and therapeutic programs based on the efficient CRISPR system. CRISPR-based COVID-19 diagnostic systems have advantages such as a high detection speed (i.e., 30 min from raw sample to reach a result), high sensitivity and precision, portability, and no need for specialized laboratory equipment. Here, we review contemporary studies on the detection of COVID-19 based on the CRISPR system.
Single cell transcriptomic analysis of human pluripotent stem cell chondrogenesis

Nature communications

2021 Jan 13

Wu, CL;Dicks, A;Steward, N;Tang, R;Katz, DB;Choi, YR;Guilak, F;
PMID: 33441552 | DOI: 10.1038/s41467-020-20598-y

The therapeutic application of human induced pluripotent stem cells (hiPSCs) for cartilage regeneration is largely hindered by the low yield of chondrocytes accompanied by unpredictable and heterogeneous off-target differentiation of cells during chondrogenesis. Here, we combine bulk RNA sequencing, single cell RNA sequencing, and bioinformatic analyses, including weighted gene co-expression analysis (WGCNA), to investigate the gene regulatory networks regulating hiPSC differentiation under chondrogenic conditions. We identify specific WNTs and MITF as hub genes governing the generation of off-target differentiation into neural cells and melanocytes during hiPSC chondrogenesis. With heterocellular signaling models, we further show that WNT signaling produced by off-target cells is responsible for inducing chondrocyte hypertrophy. By targeting WNTs and MITF, we eliminate these cell lineages, significantly enhancing the yield and homogeneity of hiPSC-derived chondrocytes. Collectively, our findings identify the trajectories and molecular mechanisms governing cell fate decision in hiPSC chondrogenesis, as well as dynamic transcriptome profiles orchestrating chondrocyte proliferation and differentiation.
Partial p16 staining in oropharyngeal squamous cell carcinoma: extent and pattern correlate with human papillomavirus RNA status.

Mod Pathol. 2012 Sep;25(9):1212-20.

Lewis JS Jr1, Chernock RD, Ma XJ, Flanagan JJ, Luo Y, Gao G, Wang X, El-Mofty SK (2012)
PMID: 22596101doi

Human papillomavirus (HPV)-related oropharyngeal squamous cell carcinoma has unique biology and better outcomes. p16 immunostaining is used as a surrogate marker for transcriptionally active HPV. Although diffuse staining is generally accepted as positive, the significance of partial staining has not been established, nor has the cutoff for extent of p16 staining that should be used to identify a tumor as HPV-related. From three other large studies utilizing p16 immunohistochemistry, we identified all cases with partial positive staining. The p16-stained slides were reviewed by three study pathologists for staining (nuclear and cytoplasmic) extent (in quartiles), and also for percentage that was confluent (ie, back-to-back cell staining). Tumors were histologically typed (keratinizing, non-keratinizing, or non-keratinizing with maturation) and tested for high-risk HPV by RNA in-situ hybridization and reverse-transcriptase PCR. For the 16 cases, there were two 4+(13%), five 3+(31%), six 2+(38%), and three 1+(19%) p16 staining tumors. Extent of staining ranged from 5 to 90% of cells positive with 25% or more confluent staining in 4/16 (25%). Of the 16 (31%) cases, 5 were HPV-related on the basis of RNA in-situ hybridization and reverse-transcriptase PCR. All of these cases had >50% p16 staining, 4/5 (80%) had more than 25% confluent staining, and 4/7 (57%) had non-keratinizing histological features. Only one of the p16 1+/2+ tumors was HPV RNA-positive (by reverse-transcriptase PCR only and low level). All 1+/2+ cases were keratinizing type or undifferentiated. By sensitive detection methods, most partial p16-positive squamous cell carcinoma cases with >50% staining harbor transcriptionally active HPV, and most HPV+ tumors have significant amounts of confluent staining. Cases with <50% p16 staining and lacking significant confluent staining rarely harbor HPV. These results support that greater than 75% p16 staining or, alternatively, >50% staining combined with >25% confluent areas, are suitable cutoffs for defining positivity.

Pages

  • « first
  • ‹ previous
  • …
  • 970
  • 971
  • 972
  • 973
  • 974
  • 975
  • 976
  • 977
  • 978
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?