Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (4638)
  • Kits & Accessories (58)
  • Support & Documents (0)
  • Publications (6996)
  • Image gallery (0)
Refine Probe List

Content for comparison

Species

  • Mouse (1142) Apply Mouse filter
  • Human (988) Apply Human filter
  • Other (359) Apply Other filter
  • Zebrafish (267) Apply Zebrafish filter
  • Human herpesvirus (99) Apply Human herpesvirus filter
  • Langat virus (65) Apply Langat virus filter
  • Powassan virus (64) Apply Powassan virus filter
  • Monkey (59) Apply Monkey filter
  • Cloning vector (38) Apply Cloning vector filter
  • Rhincodon typus (36) Apply Rhincodon typus filter
  • Pig (33) Apply Pig filter
  • Influenza virus (33) Apply Influenza virus filter
  • Lassa virus (33) Apply Lassa virus filter
  • synthetic construct (33) Apply synthetic construct filter
  • Hepacivirus (32) Apply Hepacivirus filter
  • Oryzias latipes (32) Apply Oryzias latipes filter
  • Gekko japonicus (32) Apply Gekko japonicus filter
  • Phocoenid herpesvirus (32) Apply Phocoenid herpesvirus filter
  • Newcastle disease virus (32) Apply Newcastle disease virus filter
  • Gadus morhua (32) Apply Gadus morhua filter
  • Measles virus (31) Apply Measles virus filter
  • Felis catus (27) Apply Felis catus filter
  • Astyanax mexicanus (21) Apply Astyanax mexicanus filter
  • Other virus (3) Apply Other virus filter

Gene

  • TBD (1413) Apply TBD filter
  • INS (192) Apply INS filter
  • dazl (178) Apply dazl filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • DISC1 (109) Apply DISC1 filter
  • Dmbt1 (109) Apply Dmbt1 filter
  • Hic1 (108) Apply Hic1 filter
  • NFKBIZ (91) Apply NFKBIZ filter
  • Gad1 (90) Apply Gad1 filter
  • Nfkb1 (80) Apply Nfkb1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • Ikbke (74) Apply Ikbke filter
  • FOS (73) Apply FOS filter
  • GREB1 (73) Apply GREB1 filter
  • NFKB2 (73) Apply NFKB2 filter
  • PRAME (72) Apply PRAME filter
  • PACSIN2 (72) Apply PACSIN2 filter
  • ALPP (71) Apply ALPP filter
  • Powassan (71) Apply Powassan filter
  • Langat (70) Apply Langat filter
  • 16SrRNA (69) Apply 16SrRNA filter
  • MACC1 (67) Apply MACC1 filter
  • Aim2 (66) Apply Aim2 filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • GEM (63) Apply GEM filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PACSIN3 (48) Apply PACSIN3 filter
  • RER1 (48) Apply RER1 filter
  • SPIDR (48) Apply SPIDR filter
  • SPRING1 (48) Apply SPRING1 filter
  • PVALB (47) Apply PVALB filter
  • BFSP1 (47) Apply BFSP1 filter
  • egfp (46) Apply egfp filter
  • DCC (46) Apply DCC filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • DLC1 (41) Apply DLC1 filter
  • Greb1l (40) Apply Greb1l filter
  • GFAP (39) Apply GFAP filter

Platform

  • Manual Assay RNAscope HiPlex (1466) Apply Manual Assay RNAscope HiPlex filter
  • Automated Assay for Leica Systems - RNAscope (496) Apply Automated Assay for Leica Systems - RNAscope filter
  • Manual Assay RNAscope (311) Apply Manual Assay RNAscope filter
  • Automated Assay for Ventana Systems - RNAscope (158) Apply Automated Assay for Ventana Systems - RNAscope filter
  • Manual Assay miRNAscope (41) Apply Manual Assay miRNAscope filter
  • Manual Assay BaseScope (40) Apply Manual Assay BaseScope filter
  • Automated Assay for Leica Systems - miRNAscope (27) Apply Automated Assay for Leica Systems - miRNAscope filter
  • Automated Assay for Leica Systems - BaseScope (19) Apply Automated Assay for Leica Systems - BaseScope filter
  • Automated Assay for Ventana System - BaseScope (19) Apply Automated Assay for Ventana System - BaseScope filter
  • Automated Assay for Ventana Systems - miRNAscope (10) Apply Automated Assay for Ventana Systems - miRNAscope filter

Channel

  • 1 (492) Apply 1 filter
  • 2 (443) Apply 2 filter
  • 3 (294) Apply 3 filter
  • 4 (286) Apply 4 filter
  • 6 (137) Apply 6 filter
  • 5 (99) Apply 5 filter

HiPlex Channel

  • T10 (245) Apply T10 filter
  • T1 (244) Apply T1 filter
  • T11 (244) Apply T11 filter
  • T12 (244) Apply T12 filter
  • T2 (237) Apply T2 filter
  • T4 (237) Apply T4 filter
  • T6 (237) Apply T6 filter
  • T7 (237) Apply T7 filter
  • T8 (237) Apply T8 filter
  • T3 (236) Apply T3 filter
  • T9 (236) Apply T9 filter
  • T5 (234) Apply T5 filter

Product

  • RNAscope Multiplex Fluorescent Assay (1023) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope (968) Apply RNAscope filter
  • RNAscope Fluorescent Multiplex Assay (720) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope 2.5 HD Red assay (695) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.0 Assay (497) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Brown Assay (292) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 LS Assay (191) Apply RNAscope 2.5 LS Assay filter
  • TBD (183) Apply TBD filter
  • RNAscope 2.5 HD Duplex (158) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (104) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope Multiplex Fluorescent v2 (96) Apply RNAscope Multiplex Fluorescent v2 filter
  • BASEscope Assay RED (90) Apply BASEscope Assay RED filter
  • RNAscope 2.5 VS Assay (85) Apply RNAscope 2.5 VS Assay filter
  • Basescope (53) Apply Basescope filter
  • RNAscope HiPlex v2 assay (30) Apply RNAscope HiPlex v2 assay filter
  • miRNAscope (26) Apply miRNAscope filter
  • DNAscope HD Duplex Reagent Kit (15) Apply DNAscope HD Duplex Reagent Kit filter
  • RNAscope 2.5 HD duplex reagent kit (12) Apply RNAscope 2.5 HD duplex reagent kit filter
  • BaseScope Duplex Assay (11) Apply BaseScope Duplex Assay filter
  • RNAscope Multiplex fluorescent reagent kit v2 (6) Apply RNAscope Multiplex fluorescent reagent kit v2 filter
  • RNAscope Fluorescent Multiplex Reagent kit (5) Apply RNAscope Fluorescent Multiplex Reagent kit filter
  • RNAscope ISH Probe High Risk HPV (5) Apply RNAscope ISH Probe High Risk HPV filter
  • CTCscope (4) Apply CTCscope filter
  • RNAscope 2.5 HD Reagent Kit (4) Apply RNAscope 2.5 HD Reagent Kit filter
  • RNAscope HiPlex12 Reagents Kit (3) Apply RNAscope HiPlex12 Reagents Kit filter
  • DNAscope Duplex Assay (2) Apply DNAscope Duplex Assay filter
  • RNAscope 2.5 HD Assay (2) Apply RNAscope 2.5 HD Assay filter
  • RNAscope 2.5 LS Assay - RED (2) Apply RNAscope 2.5 LS Assay - RED filter
  • RNAscope Multiplex Fluorescent Assay v2 (2) Apply RNAscope Multiplex Fluorescent Assay v2 filter
  • BOND RNAscope Brown Detection (1) Apply BOND RNAscope Brown Detection filter
  • HybEZ Hybridization System (1) Apply HybEZ Hybridization System filter
  • miRNAscope Assay Red (1) Apply miRNAscope Assay Red filter
  • RNA-Protein CO-Detection Ancillary Kit (1) Apply RNA-Protein CO-Detection Ancillary Kit filter
  • RNAscope 2.0 HD Assay - Chromogenic (1) Apply RNAscope 2.0 HD Assay - Chromogenic filter
  • RNAscope 2.5 HD- Red (1) Apply RNAscope 2.5 HD- Red filter
  • RNAscope 2.5 LS Reagent Kits (1) Apply RNAscope 2.5 LS Reagent Kits filter
  • RNAScope HiPlex assay (1) Apply RNAScope HiPlex assay filter
  • RNAscope HiPlex Image Registration Software (1) Apply RNAscope HiPlex Image Registration Software filter
  • RNAscope LS Multiplex Fluorescent Assay (1) Apply RNAscope LS Multiplex Fluorescent Assay filter
  • RNAscope Multiplex Fluorescent Reagent Kit V3 (1) Apply RNAscope Multiplex Fluorescent Reagent Kit V3 filter
  • RNAscope Multiplex Fluorescent Reagent Kit v4 (1) Apply RNAscope Multiplex Fluorescent Reagent Kit v4 filter
  • RNAscope Multiplex Fluorescent v1 (1) Apply RNAscope Multiplex Fluorescent v1 filter
  • RNAscope Target Retrieval Reagents (1) Apply RNAscope Target Retrieval Reagents filter

Research area

  • Neuroscience (1826) Apply Neuroscience filter
  • Cancer (1368) Apply Cancer filter
  • Development (494) Apply Development filter
  • Inflammation (466) Apply Inflammation filter
  • Other (406) Apply Other filter
  • Infectious Disease (405) Apply Infectious Disease filter
  • Stem Cells (254) Apply Stem Cells filter
  • Covid (232) Apply Covid filter
  • Infectious (218) Apply Infectious filter
  • HPV (186) Apply HPV filter
  • lncRNA (133) Apply lncRNA filter
  • Metabolism (90) Apply Metabolism filter
  • Developmental (83) Apply Developmental filter
  • Stem cell (76) Apply Stem cell filter
  • Immunotherapy (72) Apply Immunotherapy filter
  • Other: Methods (65) Apply Other: Methods filter
  • CGT (62) Apply CGT filter
  • HIV (62) Apply HIV filter
  • Pain (61) Apply Pain filter
  • diabetes (57) Apply diabetes filter
  • LncRNAs (44) Apply LncRNAs filter
  • Aging (43) Apply Aging filter
  • Other: Heart (39) Apply Other: Heart filter
  • Reproduction (36) Apply Reproduction filter
  • Endocrinology (33) Apply Endocrinology filter
  • Other: Metabolism (32) Apply Other: Metabolism filter
  • Obesity (29) Apply Obesity filter
  • Other: Lung (29) Apply Other: Lung filter
  • Behavior (27) Apply Behavior filter
  • Other: Kidney (27) Apply Other: Kidney filter
  • Alzheimer's Disease (26) Apply Alzheimer's Disease filter
  • Kidney (26) Apply Kidney filter
  • Bone (24) Apply Bone filter
  • Stress (21) Apply Stress filter
  • Skin (20) Apply Skin filter
  • Heart (19) Apply Heart filter
  • Liver (19) Apply Liver filter
  • Lung (19) Apply Lung filter
  • Other: Zoological Disease (19) Apply Other: Zoological Disease filter
  • Regeneration (19) Apply Regeneration filter
  • Psychiatry (17) Apply Psychiatry filter
  • behavioral (16) Apply behavioral filter
  • Fibrosis (16) Apply Fibrosis filter
  • Other: Endocrinology (16) Apply Other: Endocrinology filter
  • Other: Liver (16) Apply Other: Liver filter
  • Injury (15) Apply Injury filter
  • Other: Skin (15) Apply Other: Skin filter
  • Anxiety (14) Apply Anxiety filter
  • Memory (14) Apply Memory filter
  • Reproductive Biology (14) Apply Reproductive Biology filter

Product sub type

  • Target Probes (1030) Apply Target Probes filter
  • 38322 (8) Apply 38322 filter
  • Automated Assay 2.5: Leica System (7) Apply Automated Assay 2.5: Leica System filter
  • Control Probe - Automated Leica Multiplex (7) Apply Control Probe - Automated Leica Multiplex filter
  • Manual Assay RNAscope Multiplex (3) Apply Manual Assay RNAscope Multiplex filter
  • Automated Assay 2.5: Ventana System (3) Apply Automated Assay 2.5: Ventana System filter
  • Control Probe- Manual RNAscope Multiplex (3) Apply Control Probe- Manual RNAscope Multiplex filter
  • Control Probe- Manual RNAscope HiPlex (3) Apply Control Probe- Manual RNAscope HiPlex filter
  • Manual Assay RNAscope Brown (2) Apply Manual Assay RNAscope Brown filter
  • Manual Assay RNAscope Red (2) Apply Manual Assay RNAscope Red filter
  • Manual Assay RNAscope Duplex (2) Apply Manual Assay RNAscope Duplex filter
  • Manual Assay BaseScope Red (2) Apply Manual Assay BaseScope Red filter
  • Manual Assay miRNAscope Red (2) Apply Manual Assay miRNAscope Red filter
  • Manual Assay: Accessory Reagent (1) Apply Manual Assay: Accessory Reagent filter
  • IA: Other Accessories (1) Apply IA: Other Accessories filter
  • Control Probe - Manual BaseScope Singleplex (1) Apply Control Probe - Manual BaseScope Singleplex filter
  • Control Probe - Automated Leica (1) Apply Control Probe - Automated Leica filter
  • Control Probe - LS BaseScope Singleplex (1) Apply Control Probe - LS BaseScope Singleplex filter
  • IA: Other (1) Apply IA: Other filter
  • Control Probe - VS BaseScope Singleplex (1) Apply Control Probe - VS BaseScope Singleplex filter
  • miRNAscope Automated Assay: Leica System (1) Apply miRNAscope Automated Assay: Leica System filter

Sample Compatibility

  • Cell pellets (22) Apply Cell pellets filter
  • FFPE (22) Apply FFPE filter
  • TMA (16) Apply TMA filter
  • Fixed frozen tissue (14) Apply Fixed frozen tissue filter
  • Adherent cells (13) Apply Adherent cells filter
  • Fresh frozen tissue (9) Apply Fresh frozen tissue filter
  • Cell Cultures (9) Apply Cell Cultures filter
  • TMA(Tissue Microarray) (6) Apply TMA(Tissue Microarray) filter
  • Freshfrozen tissue (5) Apply Freshfrozen tissue filter
  • FFPE,Freshfrozen tissue,Fixed frozen tissue,TMA,Cell pellets,Adherent cells (5) Apply FFPE,Freshfrozen tissue,Fixed frozen tissue,TMA,Cell pellets,Adherent cells filter
  • CTC (3) Apply CTC filter
  • PBMC's (3) Apply PBMC's filter

Category

  • Publications (6996) Apply Publications filter

Application

  • Cancer (620) Apply Cancer filter
  • Cancer, Neuroscience (331) Apply Cancer, Neuroscience filter
  • Neuroscience (176) Apply Neuroscience filter
  • Non-coding RNA (126) Apply Non-coding RNA filter
  • Cancer, Inflammation, Neuroscience, Stem Cell (60) Apply Cancer, Inflammation, Neuroscience, Stem Cell filter
  • Cancer, Inflammation (31) Apply Cancer, Inflammation filter
  • Inflammation (26) Apply Inflammation filter
  • 1442 (24) Apply 1442 filter
  • Stem Cell (20) Apply Stem Cell filter
  • 20 (8) Apply 20 filter
  • Cancer,Neuroscience (4) Apply Cancer,Neuroscience filter
  • Cancer,Inflammation,Neuroscience,Stem Cell (1) Apply Cancer,Inflammation,Neuroscience,Stem Cell filter
Repeated cocaine or methamphetamine treatment alters astrocytic CRF2 and GLAST expression in the ventral midbrain

Addiction biology

2021 Nov 25

Sharpe, AL;Trzeciak, M;Eliason, NL;Blankenship, HE;Byrd, BAM;Douglas, PD;Freeman, WM;Beckstead, MJ;
PMID: 34825430 | DOI: 10.1111/adb.13120

Dopamine neurons in the substantia nigra (SN) and ventral tegmental area (VTA) play a central role in the reinforcing properties of abused drugs including methamphetamine and cocaine. Chronic effects of psychostimulants in the SN/VTA also involve non-dopaminergic transmitters, including glutamate and the stress-related peptide corticotropin-releasing factor (CRF). In the SN/VTA, astrocytes express a variety of membrane-bound neurotransmitter receptors and transporters that influence neurotransmission. CRF receptor type 2 (CRF2) activity in the VTA is important for stress-induced relapse and drug-seeking behaviour, but the localization of its effects is incompletely understood. Here, we first identified CRF2 transcript in astrocytes of the SN/VTA using RNA-Seq in Aldh1l1;NuTRAP mice and confirmed it using in situ hybridization (RNAscope) in wild-type mice. We then used immunofluorescence to quantify the astrocytic marker protein S100β, glial-specific glutamate/aspartate transporter GLAST, and CRF2 in the SN/VTA following 12 days of treatment (i.p.) with methamphetamine (3 mg/kg), cocaine (10 mg/kg), or saline. We observed a significant decrease in GLAST immunofluorescence in brains of psychostimulant treated mice compared with saline controls. In addition, we observed increased labelling of CRF2 in drug treated groups, a decrease in the number of S100β positive cells, and an increase of co-staining of CRF2 with both S100β and tyrosine hydroxylase (dopamine neurons). Our results suggest a significant interaction between CRF2, GLAST, and astrocytes in the midbrain that emerges with repeated exposure to psychostimulants. These findings provide rationale for future investigation of astrocyte-based strategies for altering cellular and circuit function in response to stress and drug exposure.
Sex differences in the rodent hippocampal opioid system following stress and oxycodone associated learning processes

Pharmacology, biochemistry, and behavior

2021 Nov 06

Chalangal, J;Mazid, S;Windisch, K;Milner, TA;
PMID: 34752798 | DOI: 10.1016/j.pbb.2021.173294

Over the past two decades, opioid abuse has risen especially among women. In both sexes hippocampal neural circuits involved in associative memory formation and encoding of motivational incentives are critically important in the transition from initial drug use to drug abuse/dependence. The opioid circuit particularly the mossy fiber pathway, are crucial for associative memory processes important for addiction. Our anatomical studies, especially those utilizing electron microscopic immunocytochemistry, have provided unique insight into sex differences in the distribution of opioid peptides and receptors in specific hippocampal circuits and how these distributions are altered following stress and oxycodone-associative learning processes. Here we review the hippocampal opioid system in rodents with respect to ovarian hormones effects and baseline sex differences then sex differences following acute and chronic stress. Next, we review sex differences in the hippocampal opioid system in unstressed and chronically stressed rats following oxycodone conditioned place preference. We show that opioid peptides and receptors are distributed within hippocampal circuits in females with elevated estrogen states in a manner that would enhance sensitivity to endogenous and exogenous opioids. Moreover, chronic stress primes the opioid system in females in a manner that would promote opioid-associative learning processes. In contrast, chronic stress has limited effects on the opioid system in males and reduces its capacity to support opioid-mediated learning processes. Interestingly, acute stress appears to prime males for opioid associative learning. On a broader scale the findings highlighted in this review have important implications in understanding sex differences in opioid drug use and abuse.
The spectrum of histopathological findings after SVR to DAA for recurrent HCV infection in liver transplant recipients

Virchows Archiv : an international journal of pathology

2021 Sep 08

Sanghi, V;Romero-Marrero, C;Flocco, G;Graham, RP;Abduljawad, B;Niyazi, F;Asfari, MM;Hashimoto, K;Eghtesad, B;Menon, KVN;Aucejo, FN;Lopez, R;Yerian, LM;Allende, DS;
PMID: 34498114 | DOI: 10.1007/s00428-021-03191-6

Sustained virological response (SVR) to the treatment of recurrent HCV in liver transplant recipients has excellent clinical outcomes; however, little is known about the effects on allograft histology. The study aimed to assess the histology of the allograft liver. In this single-center, retrospective cohort study, patients with recurrent hepatitis C (HCV) in allograft liver who were cured with antiviral therapy between 2010 and 2016 were identified. Biopsies were reviewed by two liver pathologists blinded to the treatment and SVR status. Paired analysis was performed to compare pre- and post-treatment histological features. Of the 62 patients analyzed, 22 patients received PEGylated interferon/ribavirin (IFN) therapy, while 40 patients received direct-acting antiviral agents (DAA). The mean age was 57 years, 24% were female, and 79% were Caucasian. RNA in situ hybridization testing for HCV and HEV was negative in all the tested patients. Significant reduction in the inflammatory grade of post-treatment biopsy specimens was noted in all subjects (n = 57; p < 0.001) and in the IFN group (n = 21; p = 0.001) but not in the DAA group (p = 0.093). Of all subjects, 21% had worsening stage, 31% had improvement, and 48% had no change in stage. Of the treatment groups, 27% in the IFN and 17% in the DAA groups had worsening stage; however, the results were not statistically significant in all subjects or by treatment modality. Persistent inflammatory infiltrates and fibrosis was noted in allograft tissue of patients cured with DAA. Significant improvement in grade was noted in the IFN group, without a significant change in stage.
Co-localization of nociceptive markers in the lumbar dorsal root ganglion and spinal cord of dromedary camel

The Journal of comparative neurology

2021 Sep 01

Javed, H;Rehmathulla, S;Tariq, S;Ali, MA;Emerald, BS;Shehab, S;
PMID: 34468017 | DOI: 10.1002/cne.25240

Nociceptive markers in mice have been identified in two distinct peptidergic and nonpeptidergic neurons in the dorsal root ganglion (DRG) and distributed in different laminae of the dorsal horn of the spinal cord. Recently, however, a study in humans showed a significant overlapping in these two populations. In this study, we investigated the distribution of various nociceptive markers in the lumbar DRG and spinal cord of the dromedary camel. Immunohistochemical data showed a remarkable percentage of total neurons in the DRG expressed IB4 binding (54.5%), calcitonin gene-related peptide (CGRP; 49.5%), transient receptor potential vanilloid 1 (TRPV1; 48.2%), and nitric oxide synthase (NOS; 30.6%). The co-localization data showed that 89.6% and 74.0% of CGRP- and TRPV1-labeled neurons, respectively, were IB4 positive. In addition, 61.6% and 84.2% of TRPV1- and NOS-immunoreactive neurons, respectively, were also co-localized with CGRP. The distribution of IB4, CGRP, TRPV1, substance P, and NOS immunoreactivities in the spinal cord were observed in lamina I and outer lamina II (IIo). Quantitative data showed that 82.4% of IB4-positive nerve terminals in laminae I and IIo were co-localized with CGRP, and 86.0% of CGRP-labeled terminals were co-localized with IB4. Similarly, 85.1% of NOS-labeled nerve terminals were co-localized with CGRP. No neuropeptide Y (NPY) or cholecystokinin (CCK) immunoreactivities were detected in the DRG, and no co-localization between IB4, NPY, and CCK were observed in the spinal cord. Our results demonstrate marked convergence of nociceptive markers in the primary afferent neurons in camels, which is similar to humans rather than the mouse. The data also emphasizes the importance of interspecies differences when selecting ideal animal models for studying nociception and treating chronic pain.
The impact of advanced age and sex on Mu Opioid Receptor signaling in the midbrain periaqueductal gray: implications on analgesia

The Journal of Pain

2021 May 01

Fullerton, E;Karom, M;Rubaharan, M;Streicher, J;Murphy, A;
| DOI: 10.1016/j.jpain.2021.03.054

Chronic pain is under-managed in individuals over 65 years of age due to a dearth of knowledge regarding the impact of age on opioid efficacy in the elderly. We have previously shown that advanced age and sex alter morphine modulation of persistent inflammatory pain (induced by intraplantar administration of Complete Freund's adjuvant (CFA)), such that morphine potency is highest in adult male rats (2mos), with EC50 values 2-fold higher in aged males (18mos) and females regardless of age. Age-induced reductions in morphine potency were accompanied by reduced mu opioid receptor (MOR) expression in the ventrolateral periaqueductal gray (vlPAG), a CNS region critical in pain modulation. The present studies further explore the impact of age on opioid signaling within the PAG. MOR affinity, availability, and G-protein activation were assessed using radioligand binding assays and GTPγS assays in vlPAG tissue from adult and aged, male and female rats collected 72h following CFA administration. Regulation of opioid induced G-protein signaling was assessed using RNAscope to analyze mRNA expression of Regulator of G-Protein Signaling (RGS) proteins RGS4 and RGS9-2. We find that aged males and females (adult and aged) exhibit reduced vlPAG MOR binding potential and reduced G-protein activation efficiency compared to adult males, suggesting age- and sex- differences in MOR machinery drive reduced opioid potency. RNAscope revealed increased expression of RGS4 and RGS9-2 in the vlPAG of aged animals compared to adults, indicating that MOR signaling is subject to greater negative regulation in the aged vlPAG. The observed age-related reductions in vlPAG MOR agonist binding and opioid induced G-protein activation, along with the observed increase in vlPAG RGS expression have significant implications in pain management in the aged population. Our novel findings elucidate several mechanisms mediating reduced morphine potency in aged animals, and identify potential targets to improve pain management in the elderly. R01DA041529-04.
Human-specific neuropeptide S receptor variants regulate fear extinction in the basal amygdala of male and female mice depending on threat salience

Biological Psychiatry

2021 Mar 01

Bengoetxea, X;Goedecke, L;Remmes, J;Blaesse, P;Grosch, T;Lesting, J;Pape, H;Jüngling, K;
| DOI: 10.1016/j.biopsych.2021.02.967

Background A nonsynonymous single nucleotide polymorphism in the neuropeptide S receptor 1 (NPSR1) gene (rs324981) results in isoleucine to asparagine substitution at amino acid 107. In humans, the ancestral variant (NPSR1 I107) is associated with increased anxiety sensitivity and risk of panic disorder, while the human-specific variant (NPSR1 N107) is considered protective against excessive anxiety. In rodents, neurobiological constituents of the NPS system have been analyzed in detail and praised for their anxiolytic-like effects. However, implication for the human situation remains unclear as rodents carry only the ancestral NPSR1 I107 variant. Methods We hypothesized that phenotypic correlates of NPSR1 variants manifest in fear-related circuits in the amygdala. We used CRISPR/Cas9-mediated gene editing to generate a “humanized” mouse strain, where individuals express either NPSR1 I107 or N107. Results Stimulation of NPSR1 evoked excitatory responses in principal neurons of the anterior basal amygdala (aBA) with significant difference in magnitude between genotypes, resulting in synaptic disinhibition of putative extinction neurons in posterior BA in mice expressing the human-specific hypofunctional N107 but not the ancestral I107 variant. N107 mice displayed improved extinction of conditioned fear, which was phenocopied after pharmacological antagonism of NPSR1 in aBA of I107 mice. Differences in fear extinction between male and female mice related to an interaction of Npsr1 genotype and salience of fear training. Conclusions In conclusion, the NPS system regulates extinction circuits in the amygdala depending on Npsr1 genotype, contributing to sex-specific differences in fear extinction and high anxiety sensitivity of individuals bearing the ancestral NPSR1 I107 variant.
Chronic stress differentially alters mRNA expression of opioid peptides and receptors in the dorsal hippocampus of female and male rats

The Journal of comparative neurology

2021 Jan 22

Johnson, MA;Contoreggi, NH;Kogan, JF;Bryson, M;Rubin, BR;Gray, JD;Kreek, MJ;McEwen, BS;Milner, TA;
PMID: 33483980 | DOI: 10.1002/cne.25115

Chronic immobilization stress (CIS) results in sex-dependent changes in opioid peptide levels and receptor subcellular distributions within the rat dorsal hippocampus which are paralleled with an inability for males to acquire conditioned place preference (CPP) to oxycodone. Here, RNAScope in situ hybridization was used to determine the expression of hippocampal opioid peptides and receptors in unstressed (US) and CIS estrus female and male adult (~ 14 wk) Sprague Dawley rats. In all groups, dentate granule cells expressed PENK and PDYN; additionally, numerous interneurons expressed PENK. OPRD1 and OPRM1 were primarily expressed in interneurons, and to a lesser extent, in pyramidal and granule cells. OPRK1-was expressed in sparsely distributed interneurons. There were few baseline sex differences: US females compared to US males had more PENK-expressing and fewer OPRD1-expressing granule cells and more OPRM1-expressing CA3b interneurons. Several expression differences emerged after CIS. Both CIS females and males compared to their US counterparts had elevated: 1) PENK-expressing dentate granule cells and interneurons in CA1 and CA2/3a; 2) OPRD1 probe number and cell expression in CA1, CA2/3a and CA3b and the dentate gyrus; and 3) OPRK1-expressing interneurons in the dentate hilus. Also, CIS males compared to US males had elevated: 1) PDYN expression in granule cells; 2) OPRD1 probe and interneuron expression in CA2/3a; 3) OPRM1 in granule cells; and 4) OPRK1 interneuron expression in CA2/3a. The sex-specific changes in hippocampal opioid gene expression may impact network properties and synaptic plasticity processes that may contribute to the attenuation of oxycodone CPP in CIS males. This article is protected by
Zika virus infects renal proximal tubular epithelial cells with prolonged persistency and cytopathic effects

Emerg Microbes Infect.

2017 Aug 23

Chen J, Yang YF, Chen J, Zhou X, Dong Z, Chen T, Yang Y, Zou P, Jiang B, Hu Y, Lu L, Zhang X, Liu J, Xu J, Zhu T.
PMID: 28831192 | DOI: 10.1038/emi.2017.67

Zika virus (ZIKV) infection can cause fetal developmental abnormalities and Guillain-Barré syndrome in adults. Although progress has been made in understanding the link between ZIKV infection and microcephaly, the pathology of ZIKV, particularly the viral reservoirs in human, remains poorly understood. Several studies have shown that compared to serum samples, patients' urine samples often have a longer duration of ZIKV persistency and higher viral load. This finding suggests that an independent viral reservoir may exist in the human urinary system. Despite the clinical observations, the host cells of ZIKV in the human urinary system are poorly characterized. In this study, we demonstrate that ZIKV can infect renal proximal tubular epithelial cells (RPTEpiCs) in immunodeficient mice in vivo and in both immortalized and primary human renal proximal tubular epithelial cells (hRPTEpiCs) in vitro. Importantly, ZIKV infection in mouse kidneys caused caspase-3-mediated apoptosis of renal cells. Similarly, in vitro infection of immortalized and primary hRPTEpiCs resulted in notable cytopathic effects. Consistent with the clinical observations, we found that ZIKV infection can persist with prolonged duration in hRPTEpiCs. RNA-Seq analyses of infected hRPTEpiCs revealed a large number of transcriptional changes in response to ZIKV infection, including type I interferon signaling genes and anti-viral response genes. Our results suggest that hRPTEpiCs are a potential reservoir of ZIKV in the human urinary system, providing a possible explanation for the prolonged persistency of ZIKV in patients' urine.

A distinct metabolically defined central nucleus circuit bidirectionally controls anxiety-related behaviors

The Journal of neuroscience : the official journal of the Society for Neuroscience

2022 Feb 01

Ren, J;Lu, CL;Huang, J;Fan, J;Guo, F;Mo, JW;Huang, WY;Kong, PL;Li, XW;Sun, LR;Sun, XD;Cao, X;
PMID: 35105676 | DOI: 10.1523/JNEUROSCI.1578-21.2022

Anxiety disorders are debilitating psychiatric diseases that affect approximately 16% of the world's population. Although it has been proposed that the central nucleus of the amygdala (CeA) plays a role in anxiety, the molecular and circuit mechanisms through which CeA neurons modulate anxiety-related behaviors are largely uncharacterized. Soluble epoxide hydrolase (sEH) is a key enzyme in the metabolism of polyunsaturated fatty acids, and has been shown to play a role in psychiatric disorders. Here, we reported that sEH was enriched in neurons in the CeA and regulated anxiety-related behaviors in adult male mice. Deletion of sEH in CeA neurons but not astrocytes induced anxiety-like behaviors. Mechanistic studies indicated that sEH was required for maintaining the the excitability of sEH positive neurons (sEHCeA neurons) in the CeA. Using chemogenetic manipulations, we found that sEHCeA neurons bidirectionally regulated anxiety-related behaviors. Notably, we identified that sEHCeA neurons directly projected to the bed nucleus of the stria terminalis (BNST) (sEHCeA-BNST). Optogenetic activation and inhibition of the sEHCeA-BNST pathway produced anxiolytic and anxiogenic effects, respectively. In summary, our studies reveal a set of molecular and circuit mechanisms of sEHCeA neurons underlying anxiety.SIGNIFICANCE STATEMENTsEH, a key enzyme that catalyzes the degradation of EETs, is shown to play a key role in mood disorders. It is well-known that sEH is mostly localized in astrocytes in the prefrontal cortex and regulates depressive-like behaviors. Notably, sEH is also expressed in CeA neurons. While the CeA has been studied for its role in the regulation of anxiety, the molecular and circuit mechanism is quite complex. In the present study, we explored a previously unknown cellular and circuitry mechanism that guides sEHCeA neurons response to anxiety. Our findings reveal a critical role of sEH in the CeA, sEHCeA neurons and CeA-BNST pathway in regulation of anxiety-related behaviors.
ITEM
BaseScope™ Probe- BA-Hs-PLBBrev-1zz-st-C2 ?
Cat No. 706591-C2
Manual Assay BaseScope

Log In to see price

Add to compare
Compare
Request a Quote
  • View Details

    Specifications

    Gene :Exogenous
    Species* :Human
    Species (common):Human
    Entrez Gene ID :N/A
    Gene Alias :N/A
    Accession No :N/A
    Target Region [Base Pairs (bp)] :2 - 47
    No. of Pairs :1
    Assay Compatibility :N/A
    Shipping Temp :2-8 C
    Storage Temp :2-8 C
    Shelf Life :24 months from the date of manufacturing
    * Please check expiration dates on the reagent package
    Probe description :BaseScope™ Probe - BA-Hs-PLBBrev-1zz-st-C2 - target 6 in human
    Channel :2
    RNAscope™ Assay Platform :Manual Assay BaseScope
  • Assay Compatibility
    Human
  • Recommended Controls
  • Product Insert/Data Sheet
    No Related Documents...

Specifications

Gene :Exogenous
Species* :Human
Species (common):Human
Entrez Gene ID :N/A
Gene Alias :N/A
Accession No :N/A
Target Region [Base Pairs (bp)] :2 - 47
No. of Pairs :1
Assay Compatibility :N/A
Shipping Temp :2-8 C
Storage Temp :2-8 C
Shelf Life :24 months from the date of manufacturing
* Please check expiration dates on the reagent package
Probe description :BaseScope™ Probe - BA-Hs-PLBBrev-1zz-st-C2 - target 6 in human
Channel :2
RNAscope™ Assay Platform :Manual Assay BaseScope
Human
No Related Documents...
ITEM
BaseScope™ Probe- BA-Rn-circRNA-31436-Junc-C2 ?
Cat No. 708991-C2
Manual Assay BaseScope

Log In to see price

Add to compare
Compare
Request a Quote
  • View Details

    Specifications

    Gene :mmu_circRNA_31436
    Species* :Other
    Species (common):Unclassified
    Entrez Gene ID :N/A
    Gene Alias :N/A
    Accession No:mmu_circRNA_31436
    Target Region [Base Pairs (bp)] :30 - 11
    No. of Pairs :1
    Assay Compatibility :N/A
    Shipping Temp :2-8 C
    Storage Temp :2-8 C
    Shelf Life :24 months from the date of manufacturing
    * Please check expiration dates on the reagent package
    Probe description :mmu_circRNA_31436 in rat
    Channel :2
    RNAscope™ Assay Platform :Manual Assay BaseScope
  • Assay Compatibility
    Unclassified
  • Recommended Controls
  • Product Insert/Data Sheet
    No Related Documents...

Specifications

Gene :mmu_circRNA_31436
Species* :Other
Species (common):Unclassified
Entrez Gene ID :N/A
Gene Alias :N/A
Accession No:mmu_circRNA_31436
Target Region [Base Pairs (bp)] :30 - 11
No. of Pairs :1
Assay Compatibility :N/A
Shipping Temp :2-8 C
Storage Temp :2-8 C
Shelf Life :24 months from the date of manufacturing
* Please check expiration dates on the reagent package
Probe description :mmu_circRNA_31436 in rat
Channel :2
RNAscope™ Assay Platform :Manual Assay BaseScope
Unclassified
No Related Documents...
ITEM
BaseScope™ Probe- BA-ORF-3zz-st-C2 ?
Cat No. 709571-C2
Manual Assay BaseScope

Log In to see price

Add to compare
Compare
Request a Quote
  • View Details

    Specifications

    Gene :ORF-sense
    Species* :Other
    Species (common):Unclassified
    Entrez Gene ID :N/A
    Gene Alias :N/A
    Accession No :N/A
    Target Region [Base Pairs (bp)] :2 - 150
    No. of Pairs :3
    Assay Compatibility :N/A
    Shipping Temp :2-8 C
    Storage Temp :2-8 C
    Shelf Life :24 months from the date of manufacturing
    * Please check expiration dates on the reagent package
    Probe description :BaseScope™ Probe - BA-ORF-3zz-st-C2 - ORF-sense in mouse
    Channel :2
    RNAscope™ Assay Platform :Manual Assay BaseScope
  • Assay Compatibility
    Unclassified
  • Recommended Controls
  • Product Insert/Data Sheet
    No Related Documents...

Specifications

Gene :ORF-sense
Species* :Other
Species (common):Unclassified
Entrez Gene ID :N/A
Gene Alias :N/A
Accession No :N/A
Target Region [Base Pairs (bp)] :2 - 150
No. of Pairs :3
Assay Compatibility :N/A
Shipping Temp :2-8 C
Storage Temp :2-8 C
Shelf Life :24 months from the date of manufacturing
* Please check expiration dates on the reagent package
Probe description :BaseScope™ Probe - BA-ORF-3zz-st-C2 - ORF-sense in mouse
Channel :2
RNAscope™ Assay Platform :Manual Assay BaseScope
Unclassified
No Related Documents...

Pages

  • « first
  • ‹ previous
  • …
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?