ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Cell & bioscience
2023 May 05
Ding, CY;Ding, YT;Ji, H;Wang, YY;Zhang, X;Yin, DM;
PMID: 37147705 | DOI: 10.1186/s13578-023-01032-4
The Journal of clinical investigation
2022 Feb 15
Ahmadzai, MM;McClain, JL;Dharshika, C;Seguella, L;Giancola, F;De Giorgio, R;Gulbransen, BD;
PMID: 35166239 | DOI: 10.1172/JCI149464
Nature communications
2023 Mar 20
Odelin, G;Faucherre, A;Marchese, D;Pinard, A;Jaouadi, H;Le Scouarnec, S;FranceGenRef Consortium, ;Chiarelli, R;Achouri, Y;Faure, E;Herbane, M;Théron, A;Avierinos, JF;Jopling, C;Collod-Béroud, G;Rezsohazy, R;Zaffran, S;
PMID: 36941270 | DOI: 10.1038/s41467-023-37110-x
Mol Psychiatry.
2017 Mar 21
Yan L, Shamir A, Skirzewski M, Leiva-Salcedo E, Kwon OB, Karavanova I, Paredes D, Malkesman O, Bailey KR, Vullhorst D, Crawley JN, Buonanno A.
PMID: 28322273 | DOI: 10.1038/mp.2017.22
Numerous genetic and functional studies implicate variants of Neuregulin-1 (NRG1) and its neuronal receptor ErbB4 in schizophrenia and many of its endophenotypes. Although the neurophysiological and behavioral phenotypes of NRG1 mutant mice have been investigated extensively, practically nothing is known about the function of NRG2, the closest NRG1 homolog. We found that NRG2 expression in the adult rodent brain does not overlap with NRG1 and is more extensive than originally reported, including expression in the striatum and medial prefrontal cortex (mPFC), and therefore generated NRG2 knockout mice (KO) to study its function. NRG2 KOs have higher extracellular dopamine levels in the dorsal striatum but lower levels in the mPFC; a pattern with similarities to dopamine dysbalance in schizophrenia. Like ErbB4 KO mice, NRG2 KOs performed abnormally in a battery of behavioral tasks relevant to psychiatric disorders. NRG2 KOs exhibit hyperactivity in a novelty-induced open field, deficits in prepulse inhibition, hypersensitivity to amphetamine, antisocial behaviors, reduced anxiety-like behavior in the elevated plus maze and deficits in the T-maze alteration reward test-a task dependent on hippocampal and mPFC function. Acute administration of clozapine rapidly increased extracellular dopamine levels in the mPFC and improved alternation T-maze performance. Similar to mice treated chronically with N-methyl-d-aspartate receptor (NMDAR) antagonists, we demonstrate that NMDAR synaptic currents in NRG2 KOs are augmented at hippocampal glutamatergic synapses and are more sensitive to ifenprodil, indicating an increased contribution of GluN2B-containing NMDARs. Our findings reveal a novel role for NRG2 in the modulation of behaviors with relevance to psychiatric disorders.
Cell reports
2022 Nov 15
Lysko, DE;Talbot, WS;
PMID: 36384112 | DOI: 10.1016/j.celrep.2022.111669
J of Neuroscience, 31(23):8491–8501.
Liu X1, Bates R, Yin DM, Shen C, Wang F, Su N, Kirov SA, Luo Y, Wang JZ, Xiong WC, Mei L (2011).
PMID: 21653853 | DOI: 10.1523/JNEUROSCI.5317-10.2011.
Nat Med.
2018 Nov 12
Falcão AM, van Bruggen D, Marques S, Meijer M, Jäkel S, Agirre E, Samudyata, Floriddia EM, Vanichkina DP, Ffrench-Constant C, Williams A, Guerreiro-Cacais AO, Castelo-Branco G.
PMID: 30420755 | DOI: 10.1038/s41591-018-0236-y
Multiple sclerosis (MS) is characterized by an immune system attack targeting myelin, which is produced by oligodendrocytes (OLs). We performed single-cell transcriptomic analysis of OL lineage cells from the spinal cord of mice induced with experimental autoimmune encephalomyelitis (EAE), which mimics several aspects of MS. We found unique OLs and OL precursor cells (OPCs) in EAE and uncovered several genes specifically alternatively spliced in these cells. Surprisingly, EAE-specific OL lineage populations expressed genes involved in antigen processing and presentation via major histocompatibility complex class I and II (MHC-I and -II), and in immunoprotection, suggesting alternative functions of these cells in a disease context. Importantly, we found that disease-specific oligodendroglia are also present in human MS brains and that a substantial number of genes known to be susceptibility genes for MS, so far mainly associated with immune cells, are expressed in the OL lineage cells. Finally, we demonstrate that OPCs can phagocytose and that MHC-II-expressing OPCs can activate memory and effector CD4-positive T cells. Our results suggest that OLs and OPCs are not passive targets but instead active immunomodulators in MS. The disease-specific OL lineage cells, for which we identify several biomarkers, may represent novel direct targets for immunomodulatory therapeutic approaches in MS.
Development (Cambridge, England)
2021 Sep 03
de Bakker, DEM;Bouwman, M;Dronkers, E;Simões, FC;Riley, PR;Goumans, MJ;Smits, AM;Bakkers, J;
PMID: 34486669 | DOI: 10.1242/dev.198937
J Neurosci.
2018 Jun 18
Giacci MK, Bartlett CA, Smith NM, Iyer KS, Toomey LM, Jiang H, Guagliardo P, Kilburn MR, Fitzgerald M.
PMID: 29915135 | DOI: 10.1523/JNEUROSCI.1898-17.2018
Loss of function following injury to the central nervous system is worsened by secondary degeneration of neurons and glia surrounding the injury and initiated by oxidative damage. However, it is not yet known which cellular populations and structures are most vulnerable to oxidative damage in vivo Using Nanoscale secondary ion mass spectrometry (NanoSIMS), oxidative damage was semi-quantified within cellular subpopulations and structures of optic nerve vulnerable to secondary degeneration, following a partial transection of the optic nerve in adult female PVG rats. Simultaneous assessment of cellular subpopulations and structures revealed oligodendroglia as the most vulnerable to DNA oxidation following injury. 5-ethynyl-2'-deoxyuridine (EdU) was used to label cells that proliferated in the first 3 days after injury. Injury led to increases in DNA, protein and lipid damage in OPCs and mature oligodendrocytes at 3 days, regardless of proliferative state, associated with a decline in the numbers of OPCs at 7 days. O4+ pre-oligodendrocytes also exhibited increased lipid peroxidation. Interestingly, EdU+ mature oligodendrocytes derived after injury demonstrated increased early susceptibility to DNA damage and lipid peroxidation. However, EdU- mature oligodendrocytes with high 8OHdG immunoreactivity were more likely to be caspase3+. By day 28, newly derived mature oligodendrocytes had significantly reduced MYRF mRNA indicating that the myelination potential of these cells may be reduced. The proportion of caspase3+ oligodendrocytes remained higher in EdU- cells. Innovative use of NanoSIMS together with traditional immunohistochemistry and in situ hybridisation have enabled the first demonstration of subpopulation specific oligodendroglial vulnerability to oxidative damage, due to secondary degeneration in vivo.SIGNIFICANCE STATEMENTInjury to the central nervous system is characterised by oxidative damage in areas adjacent to the injury. However, the cellular subpopulations and structures most vulnerable to this damage remain to be elucidated. Here we use powerful NanoSIMS techniques to show increased oxidative damage in oligodendroglia and axons and to demonstrate that cells early in the oligodendroglial lineage are the most vulnerable to DNA oxidation. Further immunohistochemical and in situ hybridisation investigation reveals that mature oligodendrocytes derived after injury are more vulnerable to oxidative damage than their counterparts existing at the time of injury and have reduced MYRF mRNA, yet pre-existing oligodendrocytes are more likely to die.
Elife. 2015 Apr 1;4.
Gemberling M, Karra R, Dickson AL, Poss KD.
PMID: 25830562 | DOI: 10.7554/eLife.05871.
Clin Cancer Res
2017 Oct 03
Boccaccio C, Luraghi P, Bigatto V, Cipriano E, Reato G, Orzan F, Sassi F, De Bacco F, Isella C, Bellomo SE, Medico E, Comoglio PM, Bertotti A, Trusolino L.
PMID: 28974546 | DOI: 10.1158/1078-0432.CCR-17-2151
Abstract
Purpose Patient-derived xenografts ("xenopatients") of colorectal cancer metastases have been essential to identify genetic determinants of resistance to the anti-EGF Receptor (EGFR) antibody cetuximab, and to explore new therapeutic strategies. From xenopatients, a genetically annotated collection of stem-like cultures ("xenospheres") was generated and characterized for response to targeted therapies.
EXPERIMENTAL DESIGN:
Xenospheres underwent exome-sequencing analysis, gene expression profile and in vitro targeted treatments to assess genetic, biological and pharmacological correspondence with xenopatients, and to investigate non-genetic biomarkers of therapeutic resistance. The outcome of EGFR family inhibition was tested in an NRG1-expressing in vivo model.
RESULTS:
Xenospheres faithfully retained the genetic make-up of their matched xenopatients over in vitro and in vivo passages. Frequent and rare genetic lesions triggering primary resistance to cetuximab through constitutive activation of the RAS signaling pathway were conserved, as well as the vulnerability to their respective targeted treatments. Xenospheres lacking such alterations (RASwt) were highly sensitive to cetuximab, but were protected by ligands activating the EGFR family, mostly NRG1. Upon reconstitution of NRG1 expression, xenospheres displayed increased tumorigenic potential in vivo, generated tumors completely resistant to cetuximab, and sensitive only to comprehensive EGFR family inhibition.
CONCLUSIONS:
Xenospheres are a reliable model to identify both genetic and non-genetic mechanisms of response and resistance to targeted therapies in colorectal cancer. In the absence of RAS pathway mutations, NRG1 and other EGFR ligands can play a major role in conferring primary cetuximab resistance, indicating that comprehensive inhibition of the EGFR family is required to achieve a significant therapeutic response.
Developmental cell
2022 May 02
van Bruggen, D;Pohl, F;Langseth, CM;Kukanja, P;Lee, H;Albiach, AM;Kabbe, M;Meijer, M;Linnarsson, S;Hilscher, MM;Nilsson, M;Sundström, E;Castelo-Branco, G;
PMID: 35523173 | DOI: 10.1016/j.devcel.2022.04.016
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com