ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Mechanisms of Development
2017 Jun 17
Morrison JA, McKinney MC, Kulesa PM.
PMID: 28633909 | DOI: 10.1016/j.mod.2017.06.004
During collective cell migration individual cells display diverse behaviors that complicate our understanding of group cell decisions of direction and cohesion. In vivo gene and protein expression analyses would shed light on the underlying molecular choreography. However, this information has been limited due to difficulties to integrate single cell detection methods and the simultaneous readout of signals deep within the embryo. Here, we optimize and integrate multiplex fluorescence in situ hybridization by RNAscope, immunohistochemistry, and tissue clearing to visualize transcript and protein localization within single cells deep within intact chick embryos. Using standard confocal microscopy, we visualize the mRNA expression of up to 3 genes simultaneously within protein labeled HNK1-positive migrating cranial neural crest cells within 2day old cleared chick embryos. Gene expression differences measured between adjacent cells or within subregions are quantified using spot counting and polyline kymograph methods, respectively. This optimization and integration of methods provide an improved 3D in vivo molecular interrogation of collective cell migration and foundation to broaden into a wider range of embryo and adult model systems.
Neuron.
2017 Jan 04
Tejeda HA, Wu J, Kornspun AR, Pignatelli M, Kashtelyan V, Krashes MJ, Lowell BB, Carlezon WA Jr, Bonci A.
PMID: 28056342 | DOI: 10.1016/j.neuron.2016.12.005
Endogenous dynorphin signaling via the kappa-opioid receptor (KOR) in the nucleus accumbens (NAcc) powerfully mediates negative affective states and stress reactivity. Excitatory inputs from the hippocampus and amygdala play a fundamental role in shaping the activity of both NAcc D1 and D2 MSNs, which encode positive and negative motivational valences, respectively. However, a circuit-based mechanism by which KOR modulation of excitation-inhibition balance modifies D1 and D2 MSN activity is lacking. Here, we provide a comprehensive synaptic framework wherein presynaptic KOR inhibition decreases the excitatory drive of D1 MSN activity by the amygdala, but not the hippocampus. Conversely, presynaptic inhibition by KORs of inhibitory synapses on D2 MSNs enhances integration of excitatory drive by the amygdala and hippocampus. In conclusion, we describe a circuit-based mechanism showing differential gating of afferent control of D1 and D2 MSN activity by KORs in a pathway-specific manner.
Cell research
2021 Nov 30
Liu, Z;Le, Q;Lv, Y;Chen, X;Cui, J;Zhou, Y;Cheng, D;Ma, C;Su, X;Xiao, L;Yang, R;Zhang, J;Ma, L;Liu, X;
PMID: 34848869 | DOI: 10.1038/s41422-021-00588-5
Neuron.
2017 Mar 22
Kim J, Zhang X, Muralidhar S, LeBlanc SA, Tonegawa S.
PMID: 28334609 | DOI: 10.1016/j.neuron.2017.02.034
Basolateral amygdala (BLA) principal cells are capable of driving and antagonizing behaviors of opposing valence. BLA neurons project to the central amygdala (CeA), which also participates in negative and positive behaviors. However, the CeA has primarily been studied as the site for negative behaviors, and the causal role for CeA circuits underlying appetitive behaviors is poorly understood. Here, we identify several genetically distinct populations of CeA neurons that mediate appetitive behaviors and dissect the BLA-to-CeA circuit for appetitive behaviors. Protein phosphatase 1 regulatory subunit 1B+ BLA pyramidal neurons to dopamine receptor 1+ CeA neurons define a pathway for promoting appetitive behaviors, while R-spondin 2+ BLA pyramidal neurons to dopamine receptor 2+ CeA neurons define a pathway for suppressing appetitive behaviors. These data reveal genetically defined neural circuits in the amygdala that promote and suppress appetitive behaviors analogous to the direct and indirect pathways of the basal ganglia.
Nature metabolism
2022 Apr 01
Haddad-Tóvolli, R;Ramírez, S;Muñoz-Moreno, E;Milà-Guasch, M;Miquel-Rio, L;Pozo, M;Chivite, I;Altirriba, J;Obri, A;Gómez-Valadés, AG;Toledo, M;Eyre, E;Bortolozzi, A;Valjent, E;Soria, G;Claret, M;
PMID: 35379970 | DOI: 10.1038/s42255-022-00557-1
PLoS Genet.
2018 Oct 04
Petratou K, Subkhankulova T, Lister JA, Rocco A, Schwetlick H, Kelsh RN.
PMID: 30286071 | DOI: 10.1371/journal.pgen.1007402
Multipotent neural crest (NC) progenitors generate an astonishing array of derivatives, including neuronal, skeletal components and pigment cells (chromatophores), but the molecular mechanisms allowing balanced selection of each fate remain unknown. In zebrafish, melanocytes, iridophores and xanthophores, the three chromatophore lineages, are thought to share progenitors and so lend themselves to investigating the complex gene regulatory networks (GRNs) underlying fate segregation of NC progenitors. Although the core GRN governing melanocyte specification has been previously established, those guiding iridophore and xanthophore development remain elusive. Here we focus on the iridophore GRN, where mutant phenotypes identify the transcription factors Sox10, Tfec and Mitfa and the receptor tyrosine kinase, Ltk, as key players. Here we present expression data, as well as loss and gain of function results, guiding the derivation of an initial iridophore specification GRN. Moreover, we use an iterative process of mathematical modelling, supplemented with a Monte Carlo screening algorithm suited to the qualitative nature of the experimental data, to allow for rigorous predictive exploration of the GRN dynamics. Predictions were experimentally evaluated and testable hypotheses were derived to construct an improved version of the GRN, which we showed produced outputs consistent with experimentally observed gene expression dynamics. Our study reveals multiple important regulatory features, notably a sox10-dependent positive feedback loop between tfec and ltk driving iridophore specification; the molecular basis of sox10 maintenance throughout iridophore development; and the cooperation between sox10 and tfec in driving expression of pnp4a, a key differentiation gene. We also assess a candidate repressor of mitfa, a melanocyte-specific target of sox10. Surprisingly, our data challenge the reported role of Foxd3, an established mitfa repressor, in iridophore regulation. Our study builds upon our previous systems biology approach, by incorporating physiologically-relevant parameter values and rigorous evaluation of parameter values within a qualitative data framework, to establish for the first time the core GRN guiding specification of the iridophore lineage.
Nature
2022 Sep 21
Karras, P;Bordeu, I;Pozniak, J;Nowosad, A;Pazzi, C;Van Raemdonck, N;Landeloos, E;Van Herck, Y;Pedri, D;Bervoets, G;Makhzami, S;Khoo, JH;Pavie, B;Lamote, J;Marin-Bejar, O;Dewaele, M;Liang, H;Zhang, X;Hua, Y;Wouters, J;Browaeys, R;Bergers, G;Saeys, Y;Bosisio, F;van den Oord, J;Lambrechts, D;Rustgi, AK;Bechter, O;Blanpain, C;Simons, BD;Rambow, F;Marine, JC;
PMID: 36131018 | DOI: 10.1038/s41586-022-05242-7
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com