Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (8)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (108) Apply TBD filter
  • HPV E6/E7 (75) Apply HPV E6/E7 filter
  • Lgr5 (61) Apply Lgr5 filter
  • PD-L1 (25) Apply PD-L1 filter
  • HPV-HR18 (20) Apply HPV-HR18 filter
  • Axin2 (19) Apply Axin2 filter
  • HPV (19) Apply HPV filter
  • GLI1 (15) Apply GLI1 filter
  • HER2 (15) Apply HER2 filter
  • FGFR1 (13) Apply FGFR1 filter
  • MALAT1 (12) Apply MALAT1 filter
  • CD68 (11) Apply CD68 filter
  • Ifng (10) Apply Ifng filter
  • MYC (10) Apply MYC filter
  • CXCL10 (9) Apply CXCL10 filter
  • OLFM4 (9) Apply OLFM4 filter
  • AR-V7 (8) Apply AR-V7 filter
  • EBER1 (8) Apply EBER1 filter
  • CD274 (7) Apply CD274 filter
  • ETV1 (7) Apply ETV1 filter
  • GREM1 (7) Apply GREM1 filter
  • HOTAIR (7) Apply HOTAIR filter
  • OLFM4 (7) Apply OLFM4 filter
  • TERT (7) Apply TERT filter
  • HPV HR18 (7) Apply HPV HR18 filter
  • AR (6) Apply AR filter
  • BRCA1 (6) Apply BRCA1 filter
  • CD3E (6) Apply CD3E filter
  • CD4 (6) Apply CD4 filter
  • (-) Remove MET filter MET (6)
  • CSF1 (6) Apply CSF1 filter
  • Ccl2 (6) Apply Ccl2 filter
  • Ptch1 (6) Apply Ptch1 filter
  • FGFR2 (6) Apply FGFR2 filter
  • Vegfa (6) Apply Vegfa filter
  • PDGFRA (6) Apply PDGFRA filter
  • CXCL12 (6) Apply CXCL12 filter
  • HPV18 (6) Apply HPV18 filter
  • Il-6 (6) Apply Il-6 filter
  • CD3 (6) Apply CD3 filter
  • SOX2 (5) Apply SOX2 filter
  • EGFR (5) Apply EGFR filter
  • ESR1 (5) Apply ESR1 filter
  • DUSP6 (5) Apply DUSP6 filter
  • MDM2 (5) Apply MDM2 filter
  • MKI67 (5) Apply MKI67 filter
  • NOTUM (5) Apply NOTUM filter
  • PTEN (5) Apply PTEN filter
  • Cxcl1 (5) Apply Cxcl1 filter
  • HPV16 (5) Apply HPV16 filter

Product

  • RNAscope 2.0 Assay (3) Apply RNAscope 2.0 Assay filter
  • Basescope (1) Apply Basescope filter
  • RNAscope 2.5 HD Duplex (1) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 LS Assay (1) Apply RNAscope 2.5 LS Assay filter

Research area

  • (-) Remove Cancer filter Cancer (8)

Category

  • Publications (8) Apply Publications filter
Clinical and prognostic value of MET gene copy number gain and chromosome 7 polysomy in primary colorectal cancer patients.

Tumour Biol. 2015 Jul 10.

Seo AN, Park KU, Choe G, Kim WH, Kim DW, Kang SB, Lee HS.
PMID: 26159851

We aimed to explore the clinical and prognostic influence of numeric alterations of MET gene copy number (GCN) and chromosome 7 (CEP7) CN in colorectal cancer (CRC) patients. MET GCN and CEP7 CN were investigated in tissue arrayed tumors from 170 CRC patients using silver in situ hybridization (SISH). MET GCN gain was defined as ≥4 copies of MET, and CEP7 polysomy was prespecified as ≥3 copies of CEP7. Additionally, MET messenger RNA (mRNA) transcription was evaluated using mRNA ISH and compared with MET GCN. MET GCN gain was observed in 14.7 % (25/170), which correlated with advanced stage (P = 0.037), presence of distant metastasis (P = 0.006), and short overall survival (OS) (P = 0.009). In contrast, CEP7 polysomy was found in 6.5 % (11/170), which was related to tumor location in the left colon (P = 0.027) and poor OS (P = 0.029). MET GCN positively correlated with CEP7 CN (R = 0.659, P < 0.001) and mRNA transcription (R = 0.239, P = 0.002). Of note, MET GCN gain and CEP7 polysomy were also associated with poor OS (P = 0.016 and P < 0.001, respectively) in stage II/III CRC patients (n = 123). In multivariate analysis, CEP7 polysomy was an independent prognostic factor for poor OS in all patients (P = 0.009; hazard ratio [HR], 2.220; 95 % confidence interval [CI], 1.233-3.997) and in stage II/III CRC patients (P < 0.001; HR, 20.781; 95 % CI, 4.600-93.882). MET GCN gain and CEP7 polysomy could predict a poor outcome in CRC patients, especially CEP7 polysomy has the most powerful prognostic impact in stage II/III CRC patients
Analysis of MET mRNA Expression in Gastric Cancers Using RNA In Situ Hybridization Assay: Its Clinical Implication and Comparison with Immunohistochemistry and Silver In Situ Hybridization.

PLoS One. 2014 Nov 3;9(11):e111658.

Choi J, Lee HE, Kim MA, Jang BG, Lee HS, Kim WH.
PMID: 25364819 | DOI: 10.1371/journal.pone.0111658

We investigated MET mRNA expression status using RNA in situ hybridization (ISH) technique in primary and metastatic lesions of 535 surgically resected gastric carcinoma (GC) cases. We compared the results with those of immunohistochemistry and silver in situ hybridization, and examined the association with clinicopathologic characteristics and prognosis. Among 535 primary GCs, 391 (73.1%) were scored 0, 87 (16.3%) were scored 1, 38 (7.1%) were scored 2, 12 (2.2%) were scored 3 and 7 (1.3%) were scored 4 by RNA ISH. High MET mRNA expression (score ≥3) was associated with lymph node metastasis (P = .014), distant metastasis (P = .001), and higher TNM stage (P<.001). MET mRNA expression was correlated with protein expression (r = 0.398; P<.001) and gene copy number (r = 0.345; P<.001). The patients showing high-MET mRNA in primary or metastatic lesions had shorter overall survival than those showing low-MET mRNA (primary tumors, P = .002; metastatic lymph nodes, P<.001). The patients showing positive conversion of MET mRNA status in metastatic lymph node had shorter overall survival than those with no conversion (P = .011). Multivariate analysis demonstrated that high MET mRNA expression in metastatic lymph node was an independent prognostic factor for overall survival (P = .007). Therefore, this study suggests that MET mRNA expression assessed by RNA ISH could be useful as a potential marker to identify MET oncogene-addicted GC.
Transcriptional upregulation of c-MET is associated with invasion and tumor budding in colorectal cancer.

Oncotarget.

2016 Oct 26

Bradley CA, Dunne PD, Bingham V, McQuaid S, Khawaja H, Craig S, James J, Moore WL, McArt DG, Lawler M, Dasgupta S, Johnston PG, Van Schaeybroeck S.
PMID: 27793046 | DOI: 10.18632/oncotarget.12933

c-MET and its ligand HGF are frequently overexpressed in colorectal cancer (CRC) and increased c-MET levels are found in CRC liver metastases. This study investigated the role of the HGF/c-MET axis in regulating migration/invasion in CRC, using pre-clinical models and clinical samples. Pre-clinically, we found marked upregulation of c-MET at both protein and mRNA levels in several invasive CRC cells. Down-regulation of c-MET using RNAi suppressed migration/invasion of parental and invasive CRC cells. Stimulation of CRC cells with rh-HGF or co-culture with HGF-expressing colonic myofibroblasts, resulted in significant increases in their migratory/invasive capacity. Importantly, HGF-induced c-MET activation promoted rapid downregulation of c-MET protein levels, while the MET transcript remained unaltered. Using RNA in situ hybridization (RNA ISH), we further showed that MET mRNA, but not protein levels, were significantly upregulated in tumor budding foci at the invasive front of a cohort of stage III CRC tumors (p < 0.001). Taken together, we show for the first time that transcriptional upregulation of MET is a key molecular event associated with CRC invasion and tumor budding. This data also indicates that RNA ISH, but not immunohistochemistry, provides a robust methodology to assess MET levels as a potential driving force of CRC tumor invasion and metastasis.

TGFβ pathway limits dedifferentiation following WNT and MAPK pathway activation to suppress intestinal tumourigenesis

Cell Death Differ.

2017 Jun 16

Cammareri P, Vincent DF, Hodder MC, Ridgway RA, Murgia C, Nobis M, Campbell AD, Varga J, Huels DJ, Subramani C, Prescott KLH, Nixon C, Hedley A, Barry ST, Greten FR, Inman GJ, Sansom OJ.
PMID: 28622298 | DOI: 10.1038/cdd.2017.92

Recent studies have suggested increased plasticity of differentiated cells within the intestine to act both as intestinal stem cells (ISCs) and tumour-initiating cells. However, little is known of the processes that regulate this plasticity. Our previous work has shown that activating mutations of Kras or the NF-κB pathway can drive dedifferentiation of intestinal cells lacking Apc. To investigate this process further, we profiled both cells undergoing dedifferentiation in vitro and tumours generated from these cells in vivo by gene expression analysis. Remarkably, no clear differences were observed in the tumours; however, during dedifferentiation in vitro we found a marked upregulation of TGFβ signalling, a pathway commonly mutated in colorectal cancer (CRC). Genetic inactivation of TGFβ type 1 receptor (Tgfbr1/Alk5) enhanced the ability of KrasG12D/+ mutation to drive dedifferentiation and markedly accelerated tumourigenesis. Mechanistically this is associated with a marked activation of MAPK signalling. Tumourigenesis from differentiated compartments is potently inhibited by MEK inhibition. Taken together, we show that tumours arising in differentiated compartments will be exposed to different suppressive signals, for example, TGFβ and blockade of these makes tumourigenesis more efficient from this compartment.

Detection of MET mRNA in gastric cancer in situ. Comparison with immunohistochemistry and sandwich immunoassays

Biotech Histochem.

2017 Aug 24

Schmid E, Klotz M, Steiner-Hahn K, Konen T, Frisk AL, Schatz C, Krahn T, von Ahsen O.
PMID: 28836864 | DOI: 10.1080/10520295.2017.1339913

Determination of predictive biomarkers by immunohistochemistry (IHC) relies on antibodies with high selectivity. RNA in situ hybridization (RNA ISH) may be used to confirm IHC and may potentially replace it if suitable antibodies are not available or are insufficiently selective to discriminate closely related protein isoforms. We validated RNA ISH as specificity control for IHC and as a potential alternative method for selecting patients for treatment with MET inhibitors. MET, the HGF receptor, is encoded by the MET proto-oncogene that may be activated by mutation or amplification. MET expression and activity were tested in a panel of control cell lines. MET could be detected in formalin fixed paraffin, embedded (FFPE) samples by IHC and RNA ISH, and this was confirmed by sandwich immunoassays of fresh frozen samples. Gastric cancer cell lines with high MET expression and phosphorylation of tyrosine-1349 respond to the MET inhibitor, BAY-853474. High expression and phosphorylation of MET is a predictive biomarker for response to MET inhibitors. We then analyzed MET expression and activity in a matched set of FFPE vs. fresh frozen tumor samples consisting of 20 cases of gastric cancer. Two of 20 clinical samples investigated exhibited high MET expression with RNA ISH and IHC. Both cases were shown by sandwich immunoassays to exhibits strong functional activity. Expression levels and functional activity in these two cases were in a range that predicted response to treatment. Our findings indicate that owing to its high selectivity, RNA ISH can be used to confirm findings obtained by IHC and potentially may replace IHC for certain targets if no suitable antibodies are available. RNA ISH is a valid platform for testing predictive biomarkers for patient selection.

Abstract LB190: DNAscopeTM: A novel chromogenic in-situ hybridization technology for high-resolution detection of DNA copy number and structural variations

Molecular and Cellular Biology/Genetics

2021 Jul 01

Wang, L;Tondnevis, F;Todorov, C;Gaspar, J;Sahajan, A;Murlidhar, V;Zhang, B;Ma, X;
| DOI: 10.1158/1538-7445.am2021-lb190

Genomic DNA anomalies such as copy number variations (gene duplication, amplification, deletion) and gene rearrangements are important biomarkers and drug targets in many cancer types. DNA in-situ hybridization (ISH) is the gold standard method to directly visualize these molecular alterations in formalin-fixed paraffin-embedded (FFPE) tumor tissues at single-cell resolution within a histological section. However, currently available fluorescent ISH (FISH) assays provide limited morphological detail due to the use of fluorescent nuclear staining compared to chromogenic staining. Furthermore, FISH techniques rely on expensive fluorescence microscopes, risk loss of fluorescent signal over time and involve tedious imaging at high magnifications (100X). There is thus an unmet need for a sensitive and robust chromogenic DNA-ISH assay that can enable high-resolution detection of genomic DNA targets with the ease of bright-field microscopy. We present here DNAscope - a novel chromogenic DNA-ISH assay - for detecting and visualizing genomic DNA targets under a standard light microscope. DNAscope is based on the widely used RNAscope double-Z probe design and signal amplification technology and provides unparalleled sensitivity and specificity with large signal dots readily visualized at 40X magnification and with full morphological context. Furthermore, DNAscope ensures specific DNA detection without interference from RNA due to the use of a novel RNA removal method. Using a duplex chromogenic detection assay in red and blue, we demonstrate highly specific and efficient detection of gene rearrangements (ALK, ROS1, RET and NTRK1), gene amplification (ERBB2, EGFR, MET) and deletion (TP53 and CDKN2A). The DNAscope assay has been carefully optimized for probe signal size and color contrast to enable easy interpretation of signal patterns under conventional light microscopy or digital pathology. Compared to conventional FISH assays, DNAscope probes are standard oligos that are designed in silico to be free of any repetitive sequences and can be rapidly synthesized for any DNA target. In conclusion, the DNAscope assay provides a powerful and convenient alternative to commonly used FISH assays in many cancer research applications.
Acinar-to-Ductal Metaplasia Induced by TGFβ Facilitates KRASG12D-driven Pancreatic Tumorigenesis

Cellular and Molecular Gastroenterology and Hepatology

2017 May 31

Chuvin N, Vincent DF, Pommier RM, Alcaraz LB, Gout J, Caligaris C, Yacoub K, Cardot V, Roger E, Kaniewski B, Martel S, Cintas C, Goddard-Léon S, Colombe A, Valantin J, Gadot N, Servoz E, Morton J, Goddard I, Couvelard A, Rebours V, Guillermet J, Sansom OJ
PMID: - | DOI: 10.1016/j.jcmgh.2017.05.005

Abstract

Background and aims

Transforming Growth Factor Beta (TGFβ) acts either as a tumor suppressor or as an oncogene, depending on the cellular context and time of activation. TGFβ activates the canonical SMAD pathway, through its interaction with the serine/threonine kinase type I and II heterodimeric receptors. Previous studies investigating TGFβ-mediated signaling in the pancreas relied either on loss-of-function approaches or on ligand overexpression and its effects on acinar cells have so far remained elusive.

Methods

We developed a transgenic mouse model allowing tamoxifen-inducible and Cre-mediated conditional activation of a constitutively active type I TGFβ receptor (TβRICA) in the pancreatic acinar compartment.

Results

We observed that TβRICA expression induced Acinar-to-Ductal Metaplasia (ADM) reprogramming, eventually facilitating the onset of KRASG12D-induced pre-cancerous PanINs (Pancreatic Intraepithelial Neoplasia). This phenotype was characterized by the cellular activation of apoptosis and dedifferentiation, two hallmarks of ADM, while at the molecular level, we evidenced a modulation in the expression of transcription factors, such as Hnf1β, Sox9 and Hes1.

Conclusion

We demonstrate that TGFβ pathway activation plays a crucial role in pancreatic tumor initiation, through its capacity to induce ADM, providing a favorable environment for KRASG12D-dependent carcinogenesis. Such findings are highly relevant for the development of early detection markers and of potentially novel treatments for pancreatic cancer patients.

Oncogenic switch and single-agent MET inhibitor sensitivity in a subset of EGFR-mutant lung cancer

Science translational medicine

2021 Sep 01

Eser, PÖ;Paranal, RM;Son, J;Ivanova, E;Kuang, Y;Haikala, HM;To, C;Okoro, JJ;Dholakia, KH;Choi, J;Eum, Y;Ogino, A;Missios, P;Ercan, D;Xu, M;Poitras, MJ;Wang, S;Ngo, K;Dills, M;Yanagita, M;Lopez, T;Lin, M;Tsai, J;Floch, N;Chambers, ES;Heng, J;Anjum, R;Santucci, AD;Michael, K;Schuller, AG;Cross, D;Smith, PD;Oxnard, GR;Barbie, DA;Sholl, LM;Bahcall, M;Palakurthi, S;Gokhale, PC;Paweletz, CP;Daley, GQ;Jänne, PA;
PMID: 34516823 | DOI: 10.1126/scitranslmed.abb3738

[Figure: see text].
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?