ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Dev Biol.
2018 Feb 09
Gerhardt B, Leesman L, Burra K, Snowball J, Rosenzweig R, Guzman N, Ambalavanan M, Sinner D.
PMID: 29428562 | DOI: 10.1016/j.ydbio.2018.02.002
Tracheobronchomalacia (TBM) is a common congenital disorder in which the cartilaginous rings of the trachea are weakened or missing. Despite the high prevalence and clinical issues associated with TBM, the etiology is largely unknown. Our previous studies demonstrated that Wntless (Wls) and its associated Wnt pathways are critical for patterning of the upper airways. Deletion of Wls in respiratory endoderm caused TBM and ectopic trachealis muscle. To understand mechanisms by which Wls mediates tracheal patterning, we performed RNA sequencing in prechondrogenic tracheal tissue of Wlsf/f;ShhCre/wt embryos. Chondrogenic Bmp4, and Sox9 were decreased, while expression of myogenic genes was increased. We identified Notum, a deacylase that inactivates Wnt ligands, as a target of Wls induced Wnt signaling. Notum's mesenchymal ventral expression in prechondrogenic trachea overlaps with expression of Axin2, a Wnt/β-catenin target and inhibitor. Notum is induced by Wnt/β-catenin in developing trachea. Deletion of Notum activated mesenchymal Wnt/β-catenin and caused tracheal mispatternning of trachealis muscle and cartilage as well as tracheal stenosis. Notum is required for tracheal morphogenesis, influencing mesenchymal condensations critical for patterning of tracheal cartilage and muscle. We propose that Notum influences mesenchymal cell differentiation by generating a barrier for Wnt ligands produced and secreted by airway epithelial cells to attenuate Wnt signaling.
Oncogene.
2018 Apr 17
Zimmerli D, Cecconi V, Valenta T, Hausmann G, Cantù C, Restivo G, Hafner J, Basler K, van den Broek M.
PMID: 29662191 | DOI: 10.1038/s41388-018-0244-x
Human papillomavirus (HPV)-driven cutaneous squamous cell carcinoma (cSCC) is the most common cancer in immunosuppressed patients. Despite indications suggesting that HPV promotes genomic instability during cSCC development, the molecular pathways underpinning HPV-driven cSCC development remain unknown. We compared the transcriptome of HPV-driven mouse cSCC with normal skin and observed higher amounts of transcripts for Porcupine and WNT ligands in cSCC, suggesting a role for WNT signaling in cSCC progression. We confirmed increased Porcupine expression in human cSCC samples. Blocking the secretion of WNT ligands by the Porcupine inhibitor LGK974 significantly diminished initiation and progression of HPV-driven cSCC. Administration of LGK974 to mice with established cSCC resulted in differentiation of cancer cells and significant reduction of the cancer stem cell compartment. Thus, WNT/β-catenin signaling is essential for HPV-driven cSCC initiation and progression as well as for maintaining the cancer stem cell niche. Interference with WNT secretion may thus represent a promising approach for therapeutic intervention.
Nature.
2018 Oct 08
Sánchez-Danés A, Larsimont JC, Liagre M, Muñoz-Couselo E, Lapouge G, Brisebarre A, Dubois C, Suppa M, Sukumaran V, Del Marmol V, Tabernero J, Blanpain C.
PMID: 30297799 | DOI: 10.1038/s41586-018-0603-3
Basal cell carcinoma (BCC) is the most frequent cancer in humans and results from constitutive activation of the Hedgehog pathway1. Several Smoothened inhibitors are used to treat Hedgehog-mediated malignancies, including BCC and medulloblastoma2. Vismodegib, a Smoothened inhibitor, leads to BCC shrinkage in the majority of patients with BCC3, but the mechanism by which it mediates BCC regression is unknown. Here we used two genetically engineered mouse models of BCC4 to investigate the mechanisms by which inhibition of Smoothened mediates tumour regression. We found that vismodegib mediates BCC regression by inhibiting a hair follicle-like fate and promoting the differentiation of tumour cells. However, a small population of tumour cells persists and is responsible for tumour relapse following treatment discontinuation, mimicking the situation found in humans5. In both mouse and human BCC, this persisting, slow-cycling tumour population expresses LGR5 and is characterized by active Wnt signalling. Combining Lgr5 lineage ablation or inhibition of Wnt signalling with vismodegib treatment leads to eradication of BCC. Our results show that vismodegib induces tumour regression by promoting tumour differentiation, and demonstrates that the synergy between Wnt and Smoothened inhibitors is a clinically relevant strategy for overcoming tumour relapse in BCC.
Cell Stem Cell.
2019 Mar 26
Wei X, Zhang L, Zhou Z, Kwon OJ, Zhang Y, Nguyen H, Dumpit R, True L, Nelson P, Dong B, Xue W, Birchmeier W, Taketo MM, Xu F, Creighton CJ, Ittmann MM, Xin L.
PMID: 30982770 | DOI: 10.1016/j.stem.2019.03.010
Cell-autonomous Wnt signaling has well-characterized functions in controlling stem cell activity, including in the prostate. While niche cells secrete Wnt ligands, the effects of Wnt signaling in niche cells per se are less understood. Here, we show that stromal cells in the proximal prostatic duct near the urethra, a mouse prostate stem cell niche, not only produce multiple Wnt ligands but also exhibit strong Wnt/β-catenin activity. The non-canonical Wnt ligand Wnt5a, secreted by proximal stromal cells, directly inhibits proliefration of prostate epithelial stem or progenitor cells whereas stromal cell-autonomous canonical Wnt/β-catenin signaling indirectly suppresses prostate stem or progenitor activity via the transforming growth factor β (TGFβ) pathway. Collectively, these pathways restrain the proliferative potential of epithelial cells in the proximal prostatic ducts. Human prostate likewise exhibits spatially restricted distribution of stromal Wnt/β-catenin activity, suggesting a conserved mechanism for tissue patterning. Thus, this study shows how distinct stromal signaling mechanisms within the prostate cooperate to regulate tissue homeostasis.
Cell death & disease
2022 Feb 21
Walter, RJ;Sonnentag, SJ;Munoz-Sagredo, L;Merkel, M;Richert, L;Bunert, F;Heneka, YM;Loustau, T;Hodder, M;Ridgway, RA;Sansom, OJ;Mely, Y;Rothbauer, U;Schmitt, M;Orian-Rousseau, V;
PMID: 35190527 | DOI: 10.1038/s41419-022-04607-0
Cell
2021 Apr 27
Dani, N;Herbst, RH;McCabe, C;Green, GS;Kaiser, K;Head, JP;Cui, J;Shipley, FB;Jang, A;Dionne, D;Nguyen, L;Rodman, C;Riesenfeld, SJ;Prochazka, J;Prochazkova, M;Sedlacek, R;Zhang, F;Bryja, V;Rozenblatt-Rosen, O;Habib, N;Regev, A;Lehtinen, MK;
PMID: 33932339 | DOI: 10.1016/j.cell.2021.04.003
JHEP Reports
2021 May 01
Kurosaki, S;Nakagawa, H;Hayata, Y;Kawamura, S;Matsushita, Y;Yamada, T;Uchino, K;Hayakawa, Y;Suzuki, N;Hata, M;Tsuboi, M;Kinoshita, H;Tanaka, Y;Nakatsuka, T;Hirata, Y;Tateishi, K;Koike, K;
| DOI: 10.1016/j.jhepr.2021.100315
J Hepatol.
2019 Mar 29
Aronson SJ, Bakker RS, Shi X, Duijst S, ten Bloemendaal L, de Waart DR, Verheij J, Elferink RPO, Beuers U, Paulusma CC, Bosma PJ.
PMID: 30935993 | DOI: 10.1016/j.jhep.2019.03.021
Abstract
BACKGROUND:
Progressive familial intrahepatic cholestasis type 3 (PFIC3) often leads to end-stage liver disease before adulthood with limited therapeutic options, due to impaired ABCB4 dependent phospholipid transport to bile. To restore ABCB4 function we propose adeno-associated virus serotype 8 (AAV8)-mediated gene therapy directed to the liver, although achieving stable transgene expression in hyperproliferative tissue is challenging. By restoring the phospholipid content in bile to levels that prevent liver damage, this study aims for stable hepatic ABCB4 expression and long-term correction of the phenotype in a murine model of PFIC3.
METHODS:
Ten weeks old Abcb4-/- mice received a single dose of AAV8-hABCB4 (n=10) or AAV8-GFP (n=7) under control of a liver specific promoter via tail vein injection. Animals were sacrificed either 10 or 26 weeks after vector administration to assess transgene persistence, after being challenged with a 0.1% cholate diet for 2 weeks. Periodic evaluation of plasma cholestatic markers was performed and bile duct cannulation enabled analysis of biliary phospholipids. Liver fibrosis and the Ki67 proliferation index were assessed by (immuno-)histochemistry.
RESULTS:
Stable transgene expression was achieved in all animals that received AAV8-hABCB4 up to 26 weeks after administration, which restored biliary phospholipid excretion to levels that ameliorate liver damage. This resulted in normalization of plasma cholestatic markers, prevented progressive liver fibrosis and reduced hepatocyte proliferation for the duration of the study.
CONCLUSION:
Liver-directed gene therapy provides stable hepatic ABCB4 expression and long-term correction of the phenotype in a murine model of PFIC3, encouraging translational studies to verify clinical feasibility.
LAY SUMMARY:
Progressive familial intrahepatic cholestasis type 3 (PFIC3) is a severe genetic liver disease that results from impaired transport of lipids to bile, which makes the bile toxic to liver cells. Because therapeutic options are currently limited, this study aims to evaluate gene therapy to correct the underlying genetic defect in a mouse model of this disease. By introducing a functional copy of the missing gene in liver cells of mice, we were able to restore lipid transport to bile and strongly reduce damage to the liver. Also proliferation of liver cells was reduced, which contributes to long term correction of the phenotype. Limitations of the mouse model requires further studies to evaluate if this approach can be applied in PFIC3 patients.
J Virol.
2018 Jun 20
Elliott G, Pheasant K, Ebert-Keel K, Stylianou J, Franklyn A, Jones J.
PMID: 29925667 | DOI: 10.1128/JVI.00818-18
The HSV1 virion host shutoff (vhs) protein is an endoribonuclease that binds to the cellular translation initiation machinery and degrades associated mRNAs, resulting in shut-off of host protein synthesis. Hence its unrestrained activity is considered to be lethal, and it has been proposed that vhs is regulated by two other virus proteins, VP22 and VP16. We have found that during infection, translation of vhs requires VP22 but not the VP22-VP16 complex. Moreover, in the absence of VP22, vhs is not overactive against cellular or viral transcripts. In transfected cells, vhs was also poorly translated, correlating with aberrant localization of its mRNA. Counterintuitively, vhs mRNA was predominantly nuclear in cells where vhs protein was detected. Likewise, transcripts from co-transfected plasmids were also retained in the same nuclei where vhs mRNA was located, while polyA binding protein (PABP) was relocalised to the nucleus in a vhs-dependent manner, implying a general block to mRNA export. Co-expression of VP16 and VP22 rescued cytoplasmic localization of vhs mRNA but failed to rescue vhs translation. We identified a 230-nucleotide sequence in the 5' region of vhs that blocked its translation and, when transferred to a heterologous GFP transcript, reduced translation without altering mRNA levels or localization. We propose that expression of vhs is tightly regulated by a combination of inherent untranslatability and auto-induced nuclear retention of its mRNA that results in a negative feedback loop, with nuclear retention but not translation of vhs mRNA being the target of rescue by the vhs-VP16-VP22 complex.IMPORTANCE A myriad of gene expression strategies has been discovered through studies carried out on viruses. This report concerns the regulation of the HSV1 vhs endoribonuclease, a virus factor that is important for counteracting host antiviral responses by degrading their mRNAs, but which must be regulated during infection to ensure that it does not act against and inhibit the virus itself. We show that regulation of vhs involves multifaceted post-transcriptional cellular and viral processes, including aberrant mRNA localization and a novel, autoregulated negative feedback loop to target its own and co-expressed mRNAs for nuclear retention, an activity that is relieved by co-expression of two other virus proteins, VP22 and VP16. These studies reveal the interplay of strategies by which multiple virus-encoded factors co-ordinate gene expression at the time they are needed. These findings are broadly relevant to both virus and cellular gene expression.
Am J Respir Crit Care Med. 2018 Dec 15.
2018 Dec 15
Reyfman PA, Walter JM, Joshi N, Anekalla KR, McQuattie-Pimentel AC, Chiu S, Fernandez R, Akbarpour M, Chen CI, Ren Z, Verma R, Abdala-Valencia H, Nam K, Chi M, Han S, Gonzalez-Gonzalez FJ, Soberanes S, Watanabe S, Williams KJN, Flozak AS, Nicholson TT, Morgan VK, Winter DR, Hinchcliff M, Hrusch CL, Guzy RD, Bonham CA, Sperling AI, Bag R, Hamanaka RB, Mutlu GM, Yeldandi AV, Marshall SA, Shilatifard A, Amaral LAN, Perlman H, Sznajder JI, Argento AC, Gillespie CT, Dematte J, Jain M, Singer BD, Ridge KM, Lam AP, Bharat A, Bhorade SM, Gottardi CJ, Budinger GRS, Misharin AV.
PMID: 30554520 | DOI: 10.1164/rccm.201712-2410OC
Cell
2018 Sep 27
Kinchen J, Chen HH, Parikh K, Antanaviciute A, Jagielowicz M, Fawkner-Corbett D, Ashley N, Cubitt L, Mellado-Gomez E, Attar M, Sharma E, Wills Q, Bowden R, Richter FC, Ahern D, Puri KD, Henault J, Gervais F, Koohy H, Simmons A.
PMID: - | DOI: 10.1016/j.cell.2018.08.067
Intestinal mesenchymal cells play essential roles in epithelial homeostasis, matrix remodeling, immunity, and inflammation. But the extent of heterogeneity within the colonic mesenchyme in these processes remains unknown. Using unbiased single-cell profiling of over 16,500 colonic mesenchymal cells, we reveal four subsets of fibroblasts expressing divergent transcriptional regulators and functional pathways, in addition to pericytes and myofibroblasts. We identified a niche population located in proximity to epithelial crypts expressing SOX6, F3 (CD142), and WNT genes essential for colonic epithelial stem cellfunction. In colitis, we observed dysregulation of this niche and emergence of an activated mesenchymal population. This subset expressed TNF superfamily member 14 (TNFSF14), fibroblastic reticular cell-associated genes, IL-33, and Lysyl oxidases. Further, it induced factors that impaired epithelial proliferation and maturation and contributed to oxidative stress and disease severity in vivo. Our work defines how the colonic mesenchyme remodels to fuel inflammation and barrier dysfunction in IBD.
Development
2019 Jan 29
Hou Z, Wu Q, Sun X, Chen H, Li Y, Zhang Y, Mori M, Yang Y, Que J, Jiang M.
PMID: 30696710 | DOI: 10.1242/dev.171496
Basal progenitor cells are critical for the establishment and maintenance of the tracheal epithelium. However, it remains unclear how these progenitor cells are specified during foregut development. Here, we found that ablation of the Wnt chaperon protein Gpr177 (also known as Wntless) in the epithelium causes the significant reduction in the numbers of basal progenitor cells accompanied by cartilage loss in Shh-Cre;Gpr177 loxp/loxp mutants. Consistent with the association between cartilage and basal cell development, Nkx2.1+p63+ basal cells are co-present with cartilage nodules in Shh-Cre;Ctnnb1 DM/loxp mutants which keep partial cell-cell adhesion but not the transcription regulation function of ß-catenin. More importantly, deletion of Ctnnb1 in the mesenchyme leads to the loss of basal cells and cartilage concomitant with the reduced transcript levels of Fgf10 in Dermo1-Cre;Ctnnb1 loxp/loxp mutants. Furthermore, deletion of Fgf receptor 2 (Fgfr2) in the epithelium also leads to significantly reduced numbers of basal cells, supporting the importance of the Wnt/Fgf crosstalk in early tracheal development.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com