SARS-CoV-2 crosses the blood-brain barrier accompanied with basement membrane disruption without tight junctions alteration
Signal transduction and targeted therapy
Zhang, L;Zhou, L;Bao, L;Liu, J;Zhu, H;Lv, Q;Liu, R;Chen, W;Tong, W;Wei, Q;Xu, Y;Deng, W;Gao, H;Xue, J;Song, Z;Yu, P;Han, Y;Zhang, Y;Sun, X;Yu, X;Qin, C;
PMID: 34489403 | DOI: 10.1038/s41392-021-00719-9
SARS-CoV-2 has been reported to show a capacity for invading the brains of humans and model animals. However, it remains unclear whether and how SARS-CoV-2 crosses the blood-brain barrier (BBB). Herein, SARS-CoV-2 RNA was occasionally detected in the vascular wall and perivascular space, as well as in brain microvascular endothelial cells (BMECs) in the infected K18-hACE2 transgenic mice. Moreover, the permeability of the infected vessel was increased. Furthermore, disintegrity of BBB was discovered in the infected hamsters by administration of Evans blue. Interestingly, the expression of claudin5, ZO-1, occludin and the ultrastructure of tight junctions (TJs) showed unchanged, whereas, the basement membrane was disrupted in the infected animals. Using an in vitro BBB model that comprises primary BMECs with astrocytes, SARS-CoV-2 was found to infect and cross through the BMECs. Consistent with in vivo experiments, the expression of MMP9 was increased and collagen IV was decreased while the markers for TJs were not altered in the SARS-CoV-2-infected BMECs. Besides, inflammatory responses including vasculitis, glial activation, and upregulated inflammatory factors occurred after SARS-CoV-2 infection. Overall, our results provide evidence supporting that SARS-CoV-2 can cross the BBB in a transcellular pathway accompanied with basement membrane disrupted without obvious alteration of TJs.
Wua HH, Choia S, Levitt P.
PMID: - | DOI: 10.1016/j.placenta.2016.03.013
Abstract
Introduction
Serotonin (5-HT) is an important neuromodulator, but recently has been shown to be involved in neurodevelopment. Although previous studies have demonstrated that the placenta is a major source of forebrain 5-HT during early forebrain development, the processes of how 5-HT production, metabolism, and transport from placenta to fetus are regulated are unknown. As an initial step in determining the mechanisms involved, we investigated the expression patterns of genes critical for 5-HT system function in mouse extraembryonic tissues.
Methods
Mid-through late gestation expression of 5-HT system-related enzymes, Tph1, Ddc,Maoa, and 5-HT transporters, Sert/Slc6a4, Oct3/Slc22a3, Vmat2/Slc18a2, and 5-HT in placenta and yolk sac were examined, with cell type-specific resolution, using multiplex fluorescent in situ hybridization to co-localize transcripts and immunocytochemistry to co-localize the corresponding proteins and neurotransmitter.
Results
Tph1 and Ddc are found in the syncytiotrophoblast I (SynT-I) and sinusoidal trophoblast giant cells (S-TGC), whereas Maoa is expressed in SynT-I, syncytiotrophoblast II (SynT-II) and S-TGC. Oct3 expression is observed in the SynT-II only, while Vmat2 is mainly expressed in S-TGC. Surprisingly, there were comparatively high expression of Tph1,Ddc, and Maoa in the yolk sac visceral endoderm.
Discussion
In addition to trophoblast cells, visceral endoderm cells in the yolk sac may contribute to fetal 5-HT production. The findings raise the possibility of a more complex regulation of 5-HT access to the fetus through the differential roles of trophoblasts that surround maternal and fetal blood space and of yolk sac endoderm prior to normal degeneration.
Cellular and molecular gastroenterology and hepatology
Kim, TY;Kim, S;Kim, Y;Lee, YS;Lee, S;Lee, SH;Kweon, MN;
PMID: 34971821 | DOI: 10.1016/j.jcmgh.2021.12.015
Dietary signals are known to modulate stemness and tumorigenicity of intestinal progenitors; however, the impact of a high-fat diet (HFD) on the intestinal stem cell (ISC) niche and its association with colorectal cancer remains unclear. Thus, we aimed to investigate how a HFD affects the ISC niche and its regulatory factors.Mice were fed a purified diet (PD) or HFD for 2 months. The expression levels of ISC-related markers, ISC-supportive signals, and Wnt2b were assessed with real-time quantitative polymerase chain reaction, in situ hybridization, and immunofluorescence staining. RNA sequencing and metabolic function were analyzed in mesenchymal stromal cells (MSCs) from PD- and HFD-fed mice. Fecal microbiota were analyzed by 16s rRNA sequencing. Bile salt hydrolase activity and bile acid (BA) levels were measured.We found that expression of CD44 and Wnt signal-related genes was higher in the colonic crypts of HFD-fed mice than in those fed a PD. Within the ISC niche, MSCs were expanded and secreted predominant levels of Wnt2b in the colon of HFD-fed mice. Of note, increased energy metabolism and cancer-associated fibroblast (CAF)-like properties were found in the colonic MSCs of HFD-fed mice. Moreover, colonic MSCs from HFD-fed mice promoted the growth of tumorigenic properties and accelerated the expression of cancer stem cell (CSC)-related markers in colon organoids. In particular, production of primary and secondary BAs was increased through the expansion of bile salt hydrolase-encoding bacteria in HFD-fed mice. Most importantly, BAs-FXR interaction stimulated Wnt2b production in colonic CAF-like MSCs.HFD-induced colonic CAF-like MSCs play an indispensable role in balancing the properties of CSCs through activation of the BAs-FXR axis.
Rehman, R;Miller, M;Krishnamurthy, SS;Kjell, J;Elsayed, L;Hauck, SM;Olde Heuvel, F;Conquest, A;Chandrasekar, A;Ludolph, A;Boeckers, T;Mulaw, MA;Goetz, M;Morganti-Kossmann, MC;Takeoka, A;Roselli, F;
PMID: 36577378 | DOI: 10.1016/j.celrep.2022.111867
The complexity of signaling events and cellular responses unfolding in neuronal, glial, and immune cells upon traumatic brain injury (TBI) constitutes an obstacle in elucidating pathophysiological links and targets for intervention. We use array phosphoproteomics in a murine mild blunt TBI to reconstruct the temporal dynamics of tyrosine-kinase signaling in TBI and then scrutinize the large-scale effects of perturbation of Met/HGFR, VEGFR1, and Btk signaling by small molecules. We show Met/HGFR as a selective modifier of early microglial response and that Met/HGFR blockade prevents the induction of microglial inflammatory mediators, of reactive microglia morphology, and TBI-associated responses in neurons and vasculature. Both acute and prolonged Met/HGFR inhibition ameliorate neuronal survival and motor recovery. Early elevation of HGF itself in the cerebrospinal fluid of TBI patients suggests that this mechanism has translational value in human subjects. Our findings identify Met/HGFR as a modulator of early neuroinflammation in TBI with promising translational potential.
Snowball J, Ambalavanan M, Whitsett J, Sinner D.
PMID: 26093309 | DOI: 10.1016/j.ydbio.2015.06.009.
Tracheobronchomalacia is a common congenital defect in which the walls of the trachea and bronchi lack of adequate cartilage required for support of the airways. Deletion of Wls, a cargo receptor mediating Wnt ligand secretion, in the embryonic endoderm using ShhCre mice inhibited formation of tracheal-bronchial cartilaginous rings. The normal dorsal-ventral patterning of tracheal mesenchyme was lost. Smooth muscle cells, identified by Acta2 staining, were aberrantly located in ventral mesenchyme of the trachea, normally the region of Sox9 expression in cartilage progenitors. Wnt/β-catenin activity, indicated by Axin2 LacZ reporter, was decreased in tracheal mesenchyme of Wlsf/f;ShhCre/+ embryos. Proliferation of chondroblasts was decreased and reciprocally, proliferation of smooth muscle cells was increased in Wlsf/f;ShhCre/+ tracheal tissue. Expression of Tbx4, Tbx5, Msx1 and Msx2, known to mediate cartilage and muscle patterning, were decreased in tracheal mesenchyme of Wlsf/f;ShhCre/+ embryos. Ex vivo studies demonstrated that Wnt7b and Wnt5a, expressed by the epithelium of developing trachea, and active Wnt/β-catenin signaling are required for tracheal chondrogenesis before formation of mesenchymal condensations. In conclusion, Wnt ligands produced by the tracheal epithelium pattern the tracheal mesenchyme via modulation of gene expression and cell proliferation required for proper tracheal cartilage and smooth muscle differentiation.
Gu, X;Zhang, YZ;O'Malley, JJ;De Preter, CC;Penzo, M;Hoon, MA;
PMID: 36894654 | DOI: 10.1038/s41593-023-01268-w
Supraspinal brain regions modify nociceptive signals in response to various stressors including stimuli that elevate pain thresholds. The medulla oblongata has previously been implicated in this type of pain control, but the neurons and molecular circuits involved have remained elusive. Here we identify catecholaminergic neurons in the caudal ventrolateral medulla that are activated by noxious stimuli in mice. Upon activation, these neurons produce bilateral feed-forward inhibition that attenuates nociceptive responses through a pathway involving the locus coeruleus and norepinephrine in the spinal cord. This pathway is sufficient to attenuate injury-induced heat allodynia and is required for counter-stimulus induced analgesia to noxious heat. Our findings define a component of the pain modulatory system that regulates nociceptive responses.
Guerrero-Juarez, CF;Lee, GH;Liu, Y;Wang, S;Karikomi, M;Sha, Y;Chow, RY;Nguyen, TTL;Iglesias, VS;Aasi, S;Drummond, ML;Nie, Q;Sarin, K;Atwood, SX;
PMID: 35687691 | DOI: 10.1126/sciadv.abm7981
How basal cell carcinoma (BCC) interacts with its tumor microenvironment to promote growth is unclear. We use singe-cell RNA sequencing to define the human BCC ecosystem and discriminate between normal and malignant epithelial cells. We identify spatial biomarkers of tumors and their surrounding stroma that reinforce the heterogeneity of each tissue type. Combining pseudotime, RNA velocity-PAGA, cellular entropy, and regulon analysis in stromal cells reveals a cancer-specific rewiring of fibroblasts, where STAT1, TGF-β, and inflammatory signals induce a noncanonical WNT5A program that maintains the stromal inflammatory state. Cell-cell communication modeling suggests that tumors respond to the sudden burst of fibroblast-specific inflammatory signaling pathways by producing heat shock proteins, whose expression we validated in situ. Last, dose-dependent treatment with an HSP70 inhibitor suppresses in vitro vismodegib-resistant BCC cell growth, Hedgehog signaling, and in vivo tumor growth in a BCC mouse model, validating HSP70's essential role in tumor growth and reinforcing the critical nature of tumor microenvironment cross-talk in BCC progression.
Liu, Y;Guerrero-Juarez, C;Xiao, F;Shettigar, N;Ramos, R;Kuan, C;Lin, Y;de Jesus Martinez Lomeli, L;Park, J;Oh, J;Liu, R;Lin, S;Tartaglia, M;Yang, R;Yu, Z;Nie, Q;Li, J;Plikus, M;
| DOI: 10.1016/j.devcel.2022.06.005
Hair follicle stem cells are regulated by dermal papilla fibroblasts, their principal signaling niche. Overactivation of Hedgehog signaling in the niche dramatically accelerates hair growth and induces follicle multiplication in mice. On single-cell RNA sequencing, dermal papilla fibroblasts increase heterogeneity to include new Wnt5ahigh states. Transcriptionally, mutant fibroblasts activate regulatory networks for Gli1, Alx3, Ebf1, Hoxc8, Sox18, and Zfp239. These networks jointly upregulate secreted factors for multiple hair morphogenesis and hair-growth-related pathways. Among these is non-conventional TGF-β ligand Scube3. We show that in normal mouse skin, Scube3 is expressed only in dermal papillae of growing, but not in resting follicles. SCUBE3 protein microinjection is sufficient to induce new hair growth, and pharmacological TGF-β inhibition rescues mutant hair hyper-activation phenotype. Moreover, dermal-papilla-enriched expression of SCUBE3 and its growth-activating effect are partially conserved in human scalp hair follicles. Thus, Hedgehog regulates mesenchymal niche function in the hair follicle via SCUBE3/TGF-β mechanism.
Human Type II Taste Cells Express ACE2 and are Infected by SARS-CoV-2
The American journal of pathology
Doyle, ME;Appleton, A;Liu, QR;Yao, Q;Mazucanti, CH;Egan, JM;
PMID: 34102107 | DOI: 10.1016/j.ajpath.2021.05.010
Chemosensory changes are well-reported symptoms of SARS-CoV-2 infection. The virus targets cells for entry by binding of its spike protein to cell-surface angiotensin-converting enzyme- 2 (ACE2). It was not known whether ACE2 is expressed on taste receptor cells (TRCs) nor if TRCs are infected directly. Using an in-situ hybridization (ISH) probe and an antibody specific to ACE2, ACE2 is present on a subpopulation of TRCs, namely, Type II cells in taste buds in taste papillae. Fungiform papillae (FP) of a SARS-CoV-2+ patient exhibiting symptoms of COVID-19, including taste changes, were biopsied. Based on ISH, replicating SARS-CoV-2 was present in Type II cells. Therefore, taste Type II cells provide a potential portal for viral entry that predicts vulnerabilities to SARS-CoV-2 in the oral cavity. The continuity and cell turnover of the patient's FP taste stem cell layer were disrupted during infection and had not completely recovered 6 weeks post symptom onset. Another patient suffering post-COVID-19 taste disturbances also had disrupted stem cells. These results demonstrate the possibility that novel and sudden taste changes frequently reported in COVID-19 may be the result of direct infection of taste papillae by SARS-CoV-2. This may result in impaired taste receptor stem cell activity and suggest more work is needed to understand the acute and post-acute dynamics of viral kinetics in the human taste bud.
MEIS-WNT5A axis regulates development of fourth ventricle choroid plexus
Development (Cambridge, England)
Kaiser, K;Jang, A;Kompanikova, P;Lun, MP;Prochazka, J;Machon, O;Dani, N;Prochazkova, M;Laurent, B;Gyllborg, D;van Amerongen, R;Fame, RM;Gupta, S;Wu, F;Barker, RA;Bukova, I;Sedlacek, R;Kozmik, Z;Arenas, E;Lehtinen, MK;Bryja, V;
PMID: 34032267 | DOI: 10.1242/dev.192054
The choroid plexus (ChP) produces cerebrospinal fluid and forms an essential brain barrier. ChP tissues form in each brain ventricle, each one adopting a distinct shape, but remarkably little is known about the mechanisms underlying ChP development. Here, we show that epithelial WNT5A is crucial for determining fourth ventricle (4V) ChP morphogenesis and size in mouse. Systemic Wnt5a knockout, or forced Wnt5a overexpression beginning at embryonic day 10.5, profoundly reduced ChP size and development. However, Wnt5a expression was enriched in Foxj1-positive epithelial cells of 4V ChP plexus, and its conditional deletion in these cells affected the branched, villous morphology of the 4V ChP. We found that WNT5A was enriched in epithelial cells localized to the distal tips of 4V ChP villi, where WNT5A acted locally to activate non-canonical WNT signaling via ROR1 and ROR2 receptors. During 4V ChP development, MEIS1 bound to the proximal Wnt5a promoter, and gain- and loss-of-function approaches demonstrated that MEIS1 regulated Wnt5a expression. Collectively, our findings demonstrate a dual function of WNT5A in ChP development and identify MEIS transcription factors as upstream regulators of Wnt5a in the 4V ChP epithelium.
Robustelli Test, E;Sena, P;Locatelli, AG;Carugno, A;di Mercurio, M;Moggio, E;Gambini, DM;Arosio, MEG;Callegaro, A;Morotti, D;Gianatti, A;Vezzoli, P;
PMID: 34989043 | DOI: 10.1111/pde.14903
Since the beginning of the coronavirus disease 2019 (COVID-19) pandemic, an increasing number of chilblain-like lesions (ChLL) have been increasingly reported worldwide. To date, the causal link between ChLL and SARS-CoV-2 infection has not been unequivocally established.In this case series, we present demographic, clinical, laboratory, and histopathological information regarding 27 young patients with a clinical diagnosis of ChLL who referred to the Dermatology Unit of Papa Giovanni XXIII Hospital, Bergamo, Italy, from 1 April 2020 to 1 June 2020.The mean age was 14.2 years, and 21 patients (78%) experienced mild systemic symptoms a median of 28 days before the onset of cutaneous lesions. ChLL mostly involved the feet (20 patients - 74%). Among acral lesions, we identified three different clinical patterns: (i) chilblains in 20 patients (74%); (ii) fixed erythematous macules in 4 children (15%); (iii) erythrocyanosis in 3 female patients (11%). Blood examinations and viral serologies, including parvovirus B19, cytomegalovirus (CMV), Epstein-Barr virus (EBV), and coxsackievirus were normal in all. Three patients (11%) underwent nasopharyngeal swab for RT-PCR for SARS-CoV-2 showing only 1 positive. Histopathological examinations of 7 skin biopsies confirmed the clinical diagnosis of chilblains; vessel thrombi were observed only in 1 case. Our findings failed to demonstrate the direct presence of SARS-CoV-2 RNA in skin biopsies, both with real-time polymerase chain reaction (RT-PCR) and RNAscope in situ hybridization (ISH).Limited number of cases, unavailability of laboratory confirmation of COVID-19 in all patients, potential methodological weakness, and latency of skin biopsies in comparison to cutaneous lesions onset.These observations may support the hypothesis of an inflammatory pathogenesis rather than the presence of peripheral viral particles. Although, we could not exclude an early phase of viral endothelial damage followed by an IFN-I or complement-mediated inflammatory phase. Further observations on a large number of patients are needed to confirm this hypothesis.
Viral mapping in COVID-19 deceased in the Augsburg autopsy series of the first wave: A multiorgan and multimethodological approach
Hirschbühl, K;Dintner, S;Beer, M;Wylezich, C;Schlegel, J;Delbridge, C;Borcherding, L;Lippert, J;Schiele, S;Müller, G;Moiraki, D;Spring, O;Wittmann, M;Kling, E;Braun, G;Kröncke, T;Claus, R;Märkl, B;Schaller, T;
PMID: 34280238 | DOI: 10.1371/journal.pone.0254872
COVID-19 is only partly understood, and the level of evidence available in terms of pathophysiology, epidemiology, therapy, and long-term outcome remains limited. During the early phase of the pandemic, it was necessary to effectively investigate all aspects of this new disease. Autopsy can be a valuable procedure to investigate the internal organs with special techniques to obtain information on the disease, especially the distribution and type of organ involvement.During the first wave of COVID-19 in Germany, autopsies of 19 deceased patients were performed. Besides gross examination, the organs were analyzed with standard histology and polymerase-chain-reaction for SARS-CoV-2. Polymerase chain reaction positive localizations were further analyzed with immunohistochemistry and RNA-in situ hybridization for SARS-CoV-2.Eighteen of 19 patients were found to have died due to COVID-19. Clinically relevant histological changes were only observed in the lungs. Diffuse alveolar damage in considerably different degrees was noted in 18 cases. Other organs, including the central nervous system, did not show specific micromorphological alterations. In terms of SARS-CoV-2 detection, the focus remains on the upper airways and lungs. This is true for both the number of positive samples and the viral load. A highly significant inverse correlation between the stage of diffuse alveolar damage and viral load was found on a case and a sample basis. Mediastinal lymph nodes and fat were also affected by the virus at high frequencies. By contrast, other organs rarely exhibited a viral infection. Moderate to strong correlations between the methods for detecting SARS-CoV-2 were observed for the lungs and for other organs.The lung is the most affected organ in gross examination, histology and polymerase chain reaction. SARS-CoV-2 detection in other organs did not reveal relevant or specific histological changes. Moreover, we did not find CNS involvement.