ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Biological Psychiatry Global Open Science
2023 Apr 01
Jiang, S;Zhang, H;Eiden, L;
| DOI: 10.1016/j.bpsgos.2023.04.001
eNeuro
2020 Apr 22
Quina LA1, Walker A1, Morton G1, Han V1, Turner EE2,3
PMID: 32332079 | DOI: 10.1523/ENEURO.0527-19.2020
Brain structure & function
2021 Jul 14
Wilheim, T;Nagy, K;Mohanraj, M;Ziarniak, K;Watanabe, M;Sliwowska, J;Kalló, I;
PMID: 34263407 | DOI: 10.1007/s00429-021-02339-z
Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology
2021 Dec 18
You, ZB;Galaj, E;Alén, F;Wang, B;Bi, GH;Moore, AR;Buck, T;Crissman, M;Pari, S;Xi, ZX;Leggio, L;Wise, RA;Gardner, EL;
PMID: 34923576 | DOI: 10.1038/s41386-021-01249-2
Oncogene.
2018 Nov 23
Chong YC, Lim TE, Fu Y, Shin EM, Tergaonkar V, Han W.
PMID: 30470823 | DOI: 10.1038/s41388-018-0585-5
Obesity increases the risk of hepatocellular carcinoma (HCC), but precise identification and characterization of druggable oncogenic pathways that contribute to the progression of NAFLD to HCC, and hence to the increased incidence and aggressiveness of HCC in obese individuals is lacking. In this regard, we demonstrate that the Indian Hedgehog (Ihh) signaling pathway is upregulated in the fatty livers of mice consuming a high fat diet, and furthermore sustained in HCC tumors specifically within the context of a NAFLD microenvironment. Using a diet-induced mouse model of HCC wherein only obese mice develop HCC, targeted ablation of hepatocyte-secreted Ihh results in a decreased tumor burden and lower grade tumors. Ihh activation regulates the transdifferentiation of ciliated stellate cells and proliferation of Epcam+ ductal cells to promote fibrosis. Mechanistically, increased expression of hitherto uncharacterized effectors of Hh pathway, namely Myc and Tgf-β2 is critical to the observed physiology. This pro-tumorigenic response is driven by increased expression of Wnt5a to effect a poorly-differentiated and invasive tumor phenotype. Wnt5a secreted from activated stellate cells act on Ror2-expressing hepatocytes. We further demonstrate that Wnt5a expression is also elevated in poorly-differentiated HCC cells, suggesting that these ligands are also able to function in an autocrine positive feedback manner to sustain poorly-differentiated tumors. Taken together, our study provides a mechanistic understanding for how Ihh signaling promotes HCC tumorigenesis specifically in obese mice. We propose that therapeutic targeting of the Hh pathway offers benefit for patients with dietary / NAFLD-driven steatotic HCC.
Frontiers in neuroscience
2023 May 05
Liu, A;Cheng, Y;Huang, J;
PMID: 37214399 | DOI: 10.3389/fnins.2023.1178693
J Neurooncol. 2014 May 28.
Abiria SA, Williams TV, Munden AL, Grover VK, Wallace A, Lundberg CJ, Valadez JG, Cooper MK.
PMID: 24867209
Neuron
2022 Feb 01
Topilko, T;Diaz, SL;Pacheco, CM;Verny, F;Rousseau, CV;Kirst, C;Deleuze, C;Gaspar, P;Renier, N;
PMID: 35123655 | DOI: 10.1016/j.neuron.2022.01.012
Nat Neurosci.
2017 Dec 11
Hrvatin S, Hochbaum DR, Nagy MA, Cicconet M, Robertson K, Cheadle L, Zilionis R, Ratner A, Borges-Monroy R, Klein AM, Sabatini BL, Greenberg ME.
PMID: 29230054 | DOI: 10.1038/s41593-017-0029-5
Activity-dependent transcriptional responses shape cortical function. However, a comprehensive understanding of the diversity of these responses across the full range of cortical cell types, and how these changes contribute to neuronal plasticity and disease, is lacking. To investigate the breadth of transcriptional changes that occur across cell types in the mouse visual cortex after exposure to light, we applied high-throughput single-cell RNA sequencing. We identified significant and divergent transcriptional responses to stimulation in each of the 30 cell types characterized, thus revealing 611 stimulus-responsive genes. Excitatory pyramidal neurons exhibited inter- and intralaminar heterogeneity in the induction of stimulus-responsive genes. Non-neuronal cells showed clear transcriptional responses that may regulate experience-dependent changes in neurovascular coupling and myelination. Together, these results reveal the dynamic landscape of the stimulus-dependent transcriptional changes occurring across cell types in the visual cortex; these changes are probably critical for cortical function and may be sites of deregulation in developmental brain disorders.
Aging Cell.
2018 Jul 30
Ortega-de San Luis C, Sanchez-Garcia MA, Nieto-Gonzalez JL, García-Junco-Clemente P, Montero-Sanchez A, Fernandez-Chacon R, Pascual A.
PMID: 30058223 | DOI: 10.1111/acel.12821
The striatum integrates motor behavior using a well-defined microcircuit whose individual components are independently affected in several neurological diseases. The glial cell line-derived neurotrophic factor (GDNF), synthesized by striatal interneurons, and Sonic hedgehog (Shh), produced by the dopaminergic neurons of the substantia nigra (DA SNpc), are both involved in the nigrostriatal maintenance but the reciprocal neurotrophic relationships among these neurons are only partially understood. To define the postnatal neurotrophic connections among fast-spiking GABAergic interneurons (FS), cholinergic interneurons (ACh), and DA SNpc, we used a genetically induced mouse model of postnatal DA SNpc neurodegeneration and separately eliminated Smoothened (Smo), the obligatory transducer of Shh signaling, in striatal interneurons. We show that FS postnatal survival relies on DA SNpc and is independent of Shh signaling. On the contrary, Shh signaling but not dopaminergic striatal innervation is required to maintain ACh in the postnatal striatum. ACh are required for DA SNpc survival in a GDNF-independent manner. These data demonstrate the existence of three parallel but interdependent neurotrophic relationships between SN and striatal interneurons, partially defined by Shh and GDNF. The definition of these new neurotrophic interactions opens the search for new molecules involved in the striatal modulatory circuit maintenance with potential therapeutic value.
Nat Commun.
2019 Feb 27
Nandadasa S, Kraft CM, Wang LW, O'Donnell A, Patel R, Gee HY, Grobe K, Cox TC, Hildebrandt F, Apte SS.
PMID: 30814516 | DOI: 10.1038/s41467-019-08520-7
Although hundreds of cytosolic or transmembrane molecules form the primary cilium, few secreted molecules are known to contribute to ciliogenesis. Here, homologous secreted metalloproteases ADAMTS9 and ADAMTS20 are identified as ciliogenesis regulators that act intracellularly. Secreted and furin-processed ADAMTS9 bound heparan sulfate and was internalized by LRP1, LRP2 and clathrin-mediated endocytosis to be gathered in Rab11 vesicles with a unique periciliary localization defined by super-resolution microscopy. CRISPR-Cas9 inactivation of ADAMTS9 impaired ciliogenesis in RPE-1 cells, which was restored by catalytically active ADAMTS9 or ADAMTS20 acting in trans, but not by their proteolytically inactive mutants. Their mutagenesis in mice impaired neural and yolk sac ciliogenesis, leading to morphogenetic anomalies resulting from impaired hedgehog signaling, which is transduced by primary cilia. In addition to their cognate extracellular proteolytic activity, ADAMTS9 and ADAMTS20 thus have an additional proteolytic role intracellularly, revealing an unexpected regulatory dimension in ciliogenesis.
Cell reports
2023 May 11
Xu, Y;Jiang, Z;Li, H;Cai, J;Jiang, Y;Otiz-Guzman, J;Xu, Y;Arenkiel, BR;Tong, Q;
PMID: 37171957 | DOI: 10.1016/j.celrep.2023.112502
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com