ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
J Exp Med.
2017 Jul 10
Cao B, Parnell LA, Diamond MS, Mysorekar IU.
PMID: 28694387 | DOI: 10.1084/jem.20170957
Zika virus (ZIKV) infection during pregnancy leads to devastating fetal outcomes, including intrauterine growth restriction and microcephaly. Greater understanding of mechanisms underlying ZIKV maternal-fetal transmission is needed to develop new therapeutic interventions. Here, we define an important role for the autophagy pathway in ZIKV vertical transmission. ZIKV infection induced autophagic activity in human trophoblasts and pharmacological inhibition limited ZIKV infectivity. Furthermore, deficiency in an essential autophagy gene, Atg16l1, in mice limited ZIKV vertical transmission and placental and fetal damage and overall improved placental and fetal outcomes. This protection was due to a placental trophoblast cell-autonomous effect of autophagic activity, not to alterations in systemic maternal ZIKV infection. Finally, an autophagy inhibitor, hydroxychloroquine, approved for use in pregnant women, attenuated placental and fetal ZIKV infection and ameliorated adverse placental and fetal outcomes. Our study reveals new insights into the mechanism of ZIKV vertical transmission and suggests that an autophagy-based therapeutic warrants possible evaluation in humans to diminish the risks of ZIKV maternal-fetal transmission.
Front. Cell. Infect. Microbiol.
2018 Apr 11
Marzi A, Emanuel J, Callison J, McNally KL, Arndt N, Chadinha S, Martellaro C, Rosenke R, Scott DP, Safronetz D, Whitehead SS, Best SM, Feldmann H.
PMID: - | DOI: 10.3389/fcimb.2018.00117
The common small animal disease models for Zika virus (ZIKV) are mice lacking the interferon responses, but infection of interferon receptor α/β knock out (IFNAR−/−) mice is not uniformly lethal particularly in older animals. Here we sought to advance this model in regard to lethality for future countermeasure efficacy testing against more recent ZIKV strains from the Asian lineage, preferably the American sublineage. We first infected IFNAR−/− mice subcutaneously with the contemporary ZIKV-Paraiba strain resulting in predominantly neurological disease with ~50% lethality. Infection with ZIKV-Paraiba by different routes established a uniformly lethal model only in young mice (4-week old) upon intraperitoneal infection. However, intraperitoneal inoculation of ZIKV-French Polynesia resulted in uniform lethality in older IFNAR−/− mice (10–12-weeks old). In conclusion, we have established uniformly lethal mouse disease models for efficacy testing of antivirals and vaccines against recent ZIKV strains representing the Asian lineage.
PLoS neglected tropical diseases
2022 Apr 01
Langerak, T;Broekhuizen, M;Unger, PA;Tan, L;Koopmans, M;van Gorp, E;Danser, AHJ;Rockx, B;
PMID: 35442976 | DOI: 10.1371/journal.pntd.0010359
Emerg Microbes Infect.
2018 Apr 25
Liu J, Kline BA, Kenny TA, Smith DR, Soloveva V, Beitzel B, Pang S, Lockett S, Hess HF, Palacios G, Kuhn JH, Sun MG, Zeng X.
PMID: 29691373 | DOI: 10.1038/s41426-018-0071-8
Zika virus (ZIKV) is an emerging flavivirus that caused thousands of human infections in recent years. Compared to other human flaviviruses, ZIKV replication is not well understood. Using fluorescent, transmission electron, and focused ion beam-scanning electron microscopy, we examined ZIKV replication dynamics in Vero 76 cells and in the brains of infected laboratory mice. We observed the progressive development of a perinuclear flaviviral replication factory both in vitro and in vivo. In vitro, we illustrated the ZIKV lifecycle from particle cell entry to egress. ZIKV particles assembled and aggregated in an induced convoluted membrane structure and ZIKV strain-specific membranous vesicles. While most mature virus particles egressed via membrane budding, some particles also likely trafficked through late endosomes and egressed through membrane abscission. Interestingly, we consistently observed a novel sheet-like virus particle array consisting of a single layer of ZIKV particles. Our study further defines ZIKV replication and identifies a novel hallmark of ZIKV infection.
J Virol.
2018 Jan 17
Scott JM, Lebratti TJ, Richner JM, Jiang X, Fernandez E, Zhao H, Fremont DH, Diamond MS, Shin H.
PMID: 29343577 | DOI: 10.1128/JVI.00038-18
Zika virus (ZIKV), which can cause devastating disease in fetuses of infected pregnant women, can be transmitted by mosquito inoculation and sexual routes. Little is known about immune protection against sexually transmitted ZIKV. In this study, we show that previous infection through intravaginal or subcutaneous routes with a contemporary Brazilian strain of ZIKV can protect against subsequent intravaginal challenge with a homologous strain. Both routes of inoculation induced high titers of ZIKV-specific and neutralizing antibody in serum and the vaginal lumen. Virus-specific T cells were recruited to and retained in the female reproductive tract after intravaginal and subcutaneous ZIKV infection. Studies in mice with genetic or acquired deficiencies in B and/or T cells demonstrated that both lymphocyte populations redundantly protect against intravaginal challenge in ZIKV-immune animals. Passive transfer of ZIKV immune IgG or T cells significantly limited intravaginal infection of naïve mice, although antibody more effectively prevented dissemination throughout the reproductive tract. Collectively, our experiments begin to establish the immune correlates of protection against intravaginal ZIKV infection, which should inform vaccination strategies in non-pregnant and pregnant women.IMPORTANCE The recent ZIKV epidemic resulted in devastating outcomes in fetuses and may affect reproductive health. Unlike other flaviviruses, ZIKV can be spread by sexual contact as well as a mosquito vector. While previous studies have identified correlates of protection for mosquito-mediated infection, few have focused on immunity against sexual transmission. As exposure to ZIKV via mosquito bite has likely occurred to many living in endemic areas, our study addresses whether this route of infection can protect against subsequent sexual exposure. We demonstrate that subcutaneous ZIKV infection can protect against subsequent vaginal infection by generating both local antiviral T cell and antibody responses. Our research begins to define the immune correlates of protection for ZIKV infection in the vagina and provides a foundation for testing ZIKV vaccines against sexual transmission
J Virol.
2016 Feb 10
Ma ZM, Dutra J, Fritts L, Miller CJ.
PMID: 26865706 | DOI: -
The human immunodeficiency virus (HIV) is primarily transmitted by heterosexual contact and approximately equal numbers of men and women are infected with the virus worldwide. Understanding the biology of HIV acquisition and dissemination in men exposed to the virus by insertive penile intercourse is likely to help with the rational design of vaccines that can limit or prevent HIV transmission. To characterize the target cells and dissemination pathways involved in establishing systemic SIV infection, we necropsied male rhesus macaques at 1, 3, 7 and 14 days after penile SIV inoculation and quantified the levels unspliced SIV RNA and spliced SIV RNA in tissue lysates and the number of SIV RNA+ cells in tissues sections. We found that penile (glans, foreskin, coronal sulcus) T cells, and, to a lesser extent, macrophages and dendritic cells are primary targets of infection and that SIV rapidly reaches the regional lymph nodes. Seven days after inoculation SIV had disseminated to the blood, systemic lymph nodes and mucosal lymphoid tissues. Further, at 7 days post-inoculation (PI), spliced SIV RNA levels are highest in the genital lymph nodes indicating that this is the site where the infection is initially amplified. By 14 days PI spliced SIV RNA levels were high in all tissues, but they were highest in the gastrointestinal tract indicating that the primary site of virus replication had shifted from the genital lymph nodes to the gut. The stepwise pattern of virus replication and dissemination described here suggests that vaccine-elicited immune responses in the genital lymph nodes could help prevent the infection after penile SIV challenge.
To be most effective, vaccines should produce anti-viral immune responses in the anatomic sites of virus replication. Thus understanding the path taken by HIV from the mucosal surfaces, that are the site of virus exposure, to the deeper tissues where the virus replicates will provide insight into where AIDS vaccines should produce immunity to be most effective. In this study we determined that, by day 7 after penile inoculation, SIV has moved first to the inguinal lymph nodes and replicates to high levels. Although the virus is widely disseminated to other tissues by day 7, replication is largely limited to the inguinal lymph nodes. The step-by-step movement of SIV from penile mucosal surfaces to the draining lymph nodes may allow a HIV vaccine that produces immunity in these lymph nodes to block HIV from establishing an infection in an exposed person.
PLoS Pathog.
2018 Feb 21
Fisher BS, Green RR, Brown RR, Wood MP, Hensley-McBain T, Fisher C, Chang J, Miller AD, Bosche WJ, Lifson JD, Mavigner M, Miller CJ, Gale M Jr., Silvestri G, Chahroudi A, Klatt NR, Sodora DL.
PMID: 29466439 | DOI: 10.1371/journal.ppat.1006871
Liver disease is a leading contributor to morbidity and mortality during HIV infection, despite the use of combination antiretroviral therapy (cART). The precise mechanisms of liver disease during HIV infection are poorly understood partially due to the difficulty in obtaining human liver samples as well as the presence of confounding factors (e.g. hepatitis co-infection, alcohol use). Utilizing the simian immunodeficiency virus (SIV) macaque model, a controlled study was conducted to evaluate the factors associated with liver inflammation and the impact of cART. We observed an increase in hepatic macrophages during untreated SIV infection that was associated with a number of inflammatory and fibrosis mediators (TNFα, CCL3, TGFβ). Moreover, an upregulation in the macrophage chemoattractant factor CCL2 was detected in the livers of SIV-infected macaques that coincided with an increase in the number of activated CD16+ monocyte/macrophages and T cells expressing the cognate receptor CCR2. Expression of Mac387 on monocyte/macrophages further indicated that these cells recently migrated to the liver. The hepatic macrophage and T cell levels strongly correlated with liver SIV DNA levels, and were not associated with the levels of 16S bacterial DNA. Utilizing in situ hybridization, SIV-infected cells were found primarily within portal triads, and were identified as T cells. Microarray analysis identified a strong antiviral transcriptomic signature in the liver during SIV infection. In contrast, macaques treated with cART exhibited lower levels of liver macrophages and had a substantial, but not complete, reduction in their inflammatory profile. In addition, residual SIV DNA and bacteria 16S DNA were detected in the livers during cART, implicating the liver as a site on-going immune activation during antiretroviral therapy. These findings provide mechanistic insights regarding how SIV infection promotes liver inflammation through macrophage recruitment, with implications for in HIV-infected individuals.
J Med Primatol.
2017 Jul 27
Hsu DC, Wegner MD, Sunyakumthorn P, Silsorn D, Tayamun S, Inthawong D, Kuncharin Y, Im-Erbsin R, Ege C, O'Connell RJ, Michael NL, Ndhlovu LC, Vasan S.
PMID: 28748665 | DOI: 10.1111/jmp.12298
Limited longitudinal data exist on the effect of HIV on adipose tissue (AT). We found an increase in CD4+ cells and detectable SHIV-RNA in AT during acute SHIV infection. SHIV-RNA+ cells were rare, suggesting that AT is unlikely to be a major source of productively infected cells in SHIV infection.
J Virol
2019 Mar 20
Cifuentes Kottkamp A, De Jesus E, Grande R, Brown JA, Jacobs AR, Lim JK and Stapleford KA
PMID: 30894466 | DOI: 10.1128/jvi.00389-19
EBioMedicine
2023 Feb 03
Zhou, J;Guan, MY;Li, RT;Qi, YN;Yang, G;Deng, YQ;Li, XF;Li, L;Yang, X;Liu, JF;Qin, CF;
PMID: 36739631 | DOI: 10.1016/j.ebiom.2023.104457
Nat Med. 2015 Jan 19.
Fukazawa Y, Lum R, Okoye AA, Park H, Matsuda K, Bae JY, Hagen SI, Shoemaker R, Deleage C, Lucero C, Morcock D, Swanson T, Legasse AW, Axthelm MK, Hesselgesser J, Geleziunas R, Hirsch VM, Edlefsen PT, Piatak M Jr, Estes JD, Lifson JD, Picker LJ.
PMID: 25599132 | DOI: 10.1038/nm.3781.
Immunity.
2016 Sep 20
Cartwright EK, Spicer L, Smith SA, Lee D, Fast R, Paganini S, Lawson BO, Nega M, Easley K, Schmitz JE, Bosinger SE, Paiardini M, Chahroudi A, Vanderford TH, Estes JD, Lifson JD, Derdeyn CA, Silvestri G.
PMID: 27653601 | DOI: 10.1016/j.immuni.2016.08.018
Infection with HIV persists despite suppressive antiretroviral therapy (ART), and treatment interruption results in rapid viral rebound. Antibody-mediated CD8(+) lymphocyte depletion in simian immunodeficiency virus (SIV)-infected rhesus macaques (RMs) shows that these cells contribute to viral control in untreated animals. However, the contribution of CD8(+) lymphocytes to maintaining viral suppression under ART remains unknown. Here, we have shown that in SIV-infected RMs treated with short-term (i.e., 8-32 week) ART, depletion of CD8(+) lymphocytes resulted in increased plasma viremia in all animals and that repopulation of CD8(+) T cells was associated with prompt reestablishment of virus control. Although the number of SIV-DNA-positive cells remained unchanged after CD8 depletion and reconstitution, the frequency of SIV-infected CD4(+) T cells before depletion positively correlated with both the peak and area under the curve of viremia after depletion. These results suggest a role for CD8(+) T cells in controlling viral production during ART, thus providing a rationale for exploring immunotherapeutic approaches in ART-treated HIV-infected individuals.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com