ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Prostate.
2018 Aug 28
Li Y, Zhang Q, Lovnicki J, Chen R, Fazli L, Wang Y, Gleave M, Huang J, Dong X.
PMID: 30155992 | DOI: 10.1002/pros.23715
Neuroendocrine prostate cancer (NEPC) is an aggressive subtype of castrate-resistant prostate cancer characterized by poor patient outcome. Whole transcriptome sequencing analyses identified a NEPC-specific RNA splicing program that is predominantly controlled by the SRRM4 gene, suggesting that SRRM4 drives NEPC development. However, whether SRRM4 expression in patients may aid pathologists in diagnosing NEPC and predicting patient survival remains to be determined. In this study, we have applied RNA in situ hybridization and immunohistochemistry assays to measure the expressions of SRRM4, NEPC markers (SYP, CD56, and CHGA), and adenocarcinoma (AdPC) markers (AR, PSA) in a series of tissue microarrays constructed from castrate-resistant prostate tumors, treatment-naïve tumors collected from radical prostatectomy, and tumors treated with neoadjuvant hormonal therapy (NHT) for 0-12 months. Three pathologists also independently evaluated tumor histology and NEPC marker status. Here, we report that SRRM4 in castrate-resistant tumors is highly expressed in NEPC, strongly correlated with SYP, CD56, and CHGA expressions (Pearson correlation r = 0.883, 0.675, and 0.881; P < 0.0001) and negatively correlated with AR and PSA expressions (Pearson correlation r = -0.544 and -0.310; P < 0.05). Overall survival is 12.3 months for patients with SRRM4 positive tumors, comparing to 23 months for patients with SRRM4 negative tumors. In treatment-naïve AdPC, low SRRM4 expression is detected in ∼16% tumor cores. It correlates with SYP and CHGA expressions, but not Gleason scores. AdPC treated with >7 month NHT has significantly higher SRRM4 expression. Based on these findings, we conclude that SRRM4 expression in castrate-resistant tumors is highly correlated with NEPC and poor patient survival. It may serve as a diagnosis and prognosis biomarker of NEPC.
EBioMedicine
2018 May 24
Gan Y, Li Y, Long Z, Lee AR, Xie N, Lovnicki JM, Tang Y, Chen X, Huang J, Dong X.
PMID: - | DOI: 10.1016/j.ebiom.2018.05.002
Treatment-induced neuroendocrine prostate cancer (t-NEPC) is an aggressive subtype of prostate cancer (PCa) that becomes more prevalent when hormonal therapy, chemotherapy, or radiation therapy is applied to patients with metastatic prostate adenocarcinoma (AdPC). How AdPC cells survive these anti-cancer therapies and progress into t-NEPC remains unclear. By comparing the whole transcriptomes between AdPC and t-NEPC, we identified Bif-1, an apoptosis-associated gene, which undergoes alternative RNA splicing in t-NEPC. We found that while Bif-1a is the predominant variant of the Bif-1 gene in AdPC, two neural-specific variants, Bif-1b and Bif-1c, are highly expressed in t-NEPC patients, patient derived xenografts, and cell models. The neural-specific RNA splicing factor, SRRM4, promotes Bif-1b and Bif-1c splicing, and the expression of SRRM4 in tumors is strongly associated with Bif-1b/-1c levels. Furthermore, we showed that Bif-1a is pro-apoptotic, while Bif-1b and Bif-1c are anti-apoptotic in PCa cells under camptothecin and UV light irritation treatments. Taken together, our data indicate that SRRM4 regulates alternative RNA splicing of the Bif-1 gene that enables PCa cells resistant to apoptotic stimuli under anti-cancer therapies, and may contribute to AdPC progression into t-NEPC.
The Journal of pathology
2021 Dec 09
Banerjee, P;Elliott, E;Rifai, O;O'Shaughnessy, J;McDade, K;Abrahams, S;Chandran, S;Smith, C;Gregory, JM;
PMID: 34883532 | DOI: 10.1002/path.5846
EBioMedicine.
2018 Aug 10
Lee AR, Gan Y, Tang Y, Dong X.
PMID: 30100395 | DOI: 10.1016/j.ebiom.2018.08.011
BACKGROUND:
Prostate adenocarcinoma (AdPC) cells can undergo lineage switching to neuroendocrine cells and develop into therapy-resistant neuroendocrine prostate cancer (NEPC). While genomic/epigenetic alterations are shown to induce neuroendocrine differentiation via an intermediate stem-like state, RNA splicing factor SRRM4 can transform AdPC cells into NEPC xenografts through a direct neuroendocrine transdifferentiation mechanism. Whether SRRM4 can also regulate a stem-cell gene network for NEPC development remains unclear.
METHODS:
Multiple AdPC cell models were transduced by lentiviral vectors encoding SRRM4. SRRM4-mediated RNA splicing and neuroendocrine differentiation of cells and xenografts were determined by qPCR, immunoblotting, and immunohistochemistry. Cellmorphology, proliferation, and colony formation rates were also studied. SRRM4 transcriptome in the DU145 cell model was profiled by AmpliSeq and analyzed by gene enrichment studies.
FINDINGS:
SRRM4 induces an overall NEPC-specific RNA splicing program in multiple cell models but creates heterogeneous transcriptomes. SRRM4-transduced DU145 cells present the most dramatic neuronal morphological changes, accelerated cell proliferation, and enhanced resistance to apoptosis. The derived xenografts show classic phenotypes similar to clinical NEPC. Whole transcriptome analyses further reveal that SRRM4 induces a pluripotency gene network consisting of the stem-cell differentiation gene, SOX2. While SRRM4 overexpression enhances SOX2 expression in both time- and dose-dependent manners in DU145 cells, RNA depletion of SOX2 compromises SRRM4-mediated stimulation of pluripotency genes. More importantly, this SRRM4-SOX2 axis is present in a subset of NEPC patient cohorts, patient-derived xenografts, and clinically relevant transgenic mouse models.
INTERPRETATION:
We report a novel mechanism by which SRRM4 drives NEPC progression via a pluripotency gene network. FUND: Canadian Institutes of Health Research, National Nature Science Foundation of China, and China Scholar Council.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com