Annals of Diagnostic Pathology
Sato K, Uehara T, Iwaya M, Nakajima T, Miyagawa Y, Suga T, Ota H, Tanaka E.
PMID: - | DOI: 10.1016/j.anndiagpath.2019.05.002
Colon cancer stem cells (CSCs) are closely related to tumorigenesis and treatment response, and LGR5 is currently the most robust and reliable CSC marker in colorectal cancer (CRC). However, LGR5 expression in CRC tumor budding (TB) is not well understood. We examined the clinicopathological and prognostic significance of LGR5 in CRC TB. LGR5 expression was evaluated by RNAscope, a newly developed RNA in situ hybridization technique, using a tissue microarray consisting of 55 patient samples of TB in colon adenocarcinoma (CA) selected from the medical archives at our hospital. Patients were stratified into negative and positive LGR5 expression groups. Inflammatory cell infiltration was weaker and histological grade was lower in the LGR5-positive group compared with the LGR5-negative group (P = 0.0407 and P = 0.0436, respectively). There was a significant difference in OS between the LGR5-positive group and LGR5-negative group (log-rank test, P = 0.0088). Cox proportional hazards models revealed that the LGR5-positive group (Overall survival (OS) = 0.37, 95% CI: 0.17–0.79, P = 0.0101) had better OS. LGR5 expression may be affected by inflammatory cell infiltration in the budding area of CA and is an important potential marker of prognosis.
Translation initiation factor eIF2Bε promotes Wnt-mediated clonogenicity and global translation in intestinal epithelial cells
Smit, WL;de Boer, RJ;Meijer, BJ;Spaan, CN;van Roest, M;Koelink, PJ;Koster, J;Dekker, E;Abbink, TEM;van der Knaap, MS;van den Brink, GR;Muncan, V;Heijmans, J;
PMID: 34399164 | DOI: 10.1016/j.scr.2021.102499
Modulation of global mRNA translation, which is essential for intestinal stem cell function, is controlled by Wnt signaling. Loss of tumor supressor APC in stem cells drives adenoma formation through hyperactivion of Wnt signaling and dysregulated translational control. It is unclear whether factors that coordinate global translation in the intestinal epithelium are needed for APC-driven malignant transformation. Here we identified nucleotide exchange factor eIF2Bε as a translation initiation factor involved in Wnt-mediated intestinal epithelial stemness. Using eIF2BεArg191His mice with a homozygous point mutation that leads to dysfunction in the enzymatic activity, we demonstrate that eIF2Bε is involved in small intestinal crypt formation, stemness marker expression, and secreted Paneth cell-derived granule formation. Wnt hyperactivation in ex vivo eIF2BεArg191His organoids, using a GSK3β inhibitor to mimic Apc driven transformation, shows that eIF2Bε is essential for Wnt-mediated clonogenicity and associated increase of the global translational capacity. Finally, we observe high eIF2Bε expression in human colonic adenoma tissues, exposing eIF2Bε as a potential target of CRC stem cells with aberrant Wnt signaling.
Mihaylova MM, Cheng CW, Cao AQ, Tripathi S, Mana MD, Bauer-Rowe KE, Abu-Remaileh M, Clavain L, Erdemir A, Lewis CA, Freinkman E, Dickey AS, La Spada AR, Huang Y, Bell GW, Deshpande V, Carmeliet P, Katajisto P, Sabatini DM, Yilmaz ÖH.
PMID: - | DOI: 10.1016/j.stem.2018.04.001
Diet has a profound effect on tissue regeneration in diverse organisms, and low caloric states such as intermittent fasting have beneficial effects on organismal health and age-associated loss of tissue function. The role of adult stem and progenitor cells in responding to short-term fasting and whether such responses improve regeneration are not well studied. Here we show that a 24 hr fast augments intestinal stem cell (ISC) function in young and aged mice by inducing a fatty acid oxidation (FAO) program and that pharmacological activation of this program mimics many effects of fasting. Acute genetic disruption of Cpt1a, the rate-limiting enzyme in FAO, abrogates ISC-enhancing effects of fasting, but long-term Cpt1a deletion decreases ISC numbers and function, implicating a role for FAO in ISC maintenance. These findings highlight a role for FAO in mediating pro-regenerative effects of fasting in intestinal biology, and they may represent a viable strategy for enhancing intestinal regeneration.
Roccio M, Perny M, Ealy M, Widmer HR, Heller S, Senn P.
PMID: 30279445 | DOI: 10.1038/s41467-018-06334-7
Sensory hair cells located in the organ of Corti are essential for cochlear mechanosensation. Their loss is irreversible in humans resulting in permanent hearing loss. The development of therapeutic interventions for hearing loss requires fundamental knowledge about similarities and potential differences between animal models and human development as well as the establishment of human cell based-assays. Here we analyze gene and protein expression of the developing human inner ear in a temporal window spanning from week 8 to 12 post conception, when cochlear hair cells become specified. Utilizing surface markers for the cochlear prosensory domain, namely EPCAM and CD271, we purify postmitotic hair cell progenitors that, when placed in culture in three-dimensional organoids, regain proliferative potential and eventually differentiate to hair cell-like cells in vitro. These results provide a foundation for comparative studies with otic cells generated from human pluripotent stem cells and for establishing novel platforms for drug validation.
Cell Mol Gastroenterol Hepatol.
Montenegro-Miranda PS, van der Meer JHM, Jones C, Meisner S, Vermeulen JLM, Koster J, Wildenberg ME, Heijmans J, Boudreau F, Ribeiro A, van den Brink GR, Muncan V
PMID: 32145468 | DOI: 10.1016/j.jcmgh.2020.02.007
BACKGROUND & AIMS:
Recent evidence has suggested that the intact intestinal epithelial barrier protects our body from a range of immune-mediated diseases. The epithelial layer has an impressive ability to reconstitute and repair upon damage and this process of repair increasingly is seen as a therapeutic target. In vitro models to study this process in primary intestinal cells are lacking.
METHODS:
We established and characterized an in vitro model of intestinal damage and repair by applying ?-radiation on small-intestinal organoids. We then used this model to identify novel regulators of intestinal regeneration.
RESULTS:
We identified hepatocyte nuclear factor 4? (HNF4?) as a pivotal upstream regulator of the intestinal regenerative response. Organoids lacking Hnf4a were not able to propagate in vitro. Importantly, intestinal Hnf4a knock-out mice showed impaired regeneration after whole-body irradiation, confirming intestinal organoids as a valuable alternative to in vivo studies.
CONCLUSIONS:
In conclusion, we established and validated an in vitro damage-repair model and identified HNF4? as a crucial regulator of intestinal regeneration
Childs, CJ;Holloway, EM;Sweet, CW;Tsai, YH;Wu, A;Vallie, A;Eiken, MK;Capeling, MM;Zwick, RK;Palikuqi, B;Trentesaux, C;Wu, JH;Pellon-Cardenas, O;Zhang, CJ;Glass, IA;Loebel, C;Yu, Q;Camp, JG;Sexton, JZ;Klein, OD;Verzi, MP;Spence, JR;
PMID: 36821371 | DOI: 10.1172/jci.insight.165566
Epithelial organoids derived from intestinal tissue, called 'enteroids', recapitulate many aspects of the organ in vitro, and can be used for biological discovery, personalized medicine, and drug development. Here, we interrogated the cell signaling environment within the developing human intestine to identify niche cues that may be important for epithelial development and homeostasis. We identify an EGF family member, EPIREGULIN (EREG), which is robustly expressed in the developing human crypt. Enteroids generated from the developing human intestine grown in standard culture conditions, which contain EGF, are dominated by stem and progenitor cells, feature little differentiation and no spatial organization. Our results demonstrate that EREG can replace EGF in vitro, and EREG leads to spatially resolved enteroids that feature budded and proliferative crypt domains and a differentiated villus-like central lumen. Multiomic (transcriptome plus epigenome) profiling of native crypts, EGF-grown and EREG-grown enteroids show that EGF-enteroids have an altered chromatin landscape that is dependent on EGF concentration, downregulate the master intestinal transcription factor CDX2, and ectopically express stomach genes, a phenomenon that is reversible. This is in contrast to EREG-grown enteroids, which remain intestine-like in culture. Thus, EREG creates a homeostatic intestinal niche in vitro, enabling interrogation of stem cell function, cellular differentiation, and disease modeling.
Gao, C;Ge, H;Kuan, SF;Cai, C;Lu, X;Esni, F;Schoen, R;Wang, J;Chu, E;Hu, J;
PMID: 36778401 | DOI: 10.21203/rs.3.rs-2531119/v1
BRAFV600E mutation is a driver mutation in the serrated pathway to colorectal cancers. BRAFV600E drives tumorigenesis through constitutive downstream extracellular signal-regulated kinase (ERK) activation, but high-intensity ERK activation can also trigger tumor suppression. Whether and how oncogenic ERK signaling can be intrinsically adjusted to a "just-right" level optimal for tumorigenesis remains undetermined. In this study, we found that FAK (Focal adhesion kinase) expression was reduced in BRAFV600E-mutant adenomas/polyps in mice and patients. In Vill-Cre;BRAFV600E/+;Fakfl/fl mice, Fak deletion maximized BRAFV600E's oncogenic activity and increased cecal tumor incidence to 100%. Mechanistically, our results showed that Fak loss, without jeopardizing BRAFV600E-induced ERK pathway transcriptional output, reduced EGFR (epidermal growth factor receptor)-dependent ERK phosphorylation. Reduction in ERK phosphorylation resulted in increased mRNA expression and stability of Lgr4, promoting intestinal stemness and cecal tumor formation. Together, our findings show that a "just-right" ERK signaling optimal for BRAFV600E-induced cecal tumor formation can be achieved via Fak loss-mediated downregulation of ERK phosphorylation.
Novellasdemunt, L;Kucharska, A;Baulies, A;Hutton, C;Vlachogiannis, G;Repana, D;Rowan, A;Suárez-Bonnet, A;Ciccarelli, F;Valeri, N;Li, VSW;
PMID: 36669491 | DOI: 10.1016/j.stemcr.2022.12.013
Adenomatous polyposis coli (APC) mutation is the hallmark of colorectal cancer (CRC), resulting in constitutive WNT activation. Despite decades of research, targeting WNT signaling in cancer remains challenging due to its on-target toxicity. We have previously shown that the deubiquitinating enzyme USP7 is a tumor-specific WNT activator in APC-truncated cells by deubiquitinating and stabilizing β-catenin, but its role in gut tumorigenesis is unknown. Here, we show in vivo that deletion of Usp7 in Apc-truncated mice inhibits crypt hyperproliferation and intestinal tumor development. Loss of Usp7 prolongs the survival of the sporadic intestinal tumor model. Genetic deletion, but not pharmacological inhibition, of Usp7 in Apc+/- intestine induces colitis and enteritis. USP7 inhibitor treatment suppresses growth of patient-derived cancer organoids carrying APC truncations in vitro and in xenografts. Our findings provide direct evidence that USP7 inhibition may offer a safe and efficacious tumor-specific therapy for both sporadic and germline APC-mutated CRC.
Cui, Y;Wu, H;Liu, Z;Ma, T;Liang, W;Zeng, Q;Chen, D;Qin, Q;Huang, B;Wang, MH;Huang, X;He, Y;Kuang, Y;Sugimoto, S;Sato, T;Wang, L;
PMID: 36373877 | DOI: 10.1002/path.6031
Radiation enteritis (RE) is a prevalent complication of radiotherapy for pelvic malignant tumors, characterized by severe intestinal epithelial destruction and progressive submucosal fibrosis. However, little is known about the pathogenesis of this disease and so far, there is no specific targeted therapy. Here, we report that CXCL16 is up-regulated in the injured intestinal tissues of RE patients and in a mouse model. Genetic deletion of Cxcl16 mitigates fibrosis and promotes intestinal stem cell-mediated epithelial regeneration after radiation injury in mice. Mechanistically, CXCL16 functions on myofibroblasts through its receptor CXCR6 and activates JAK3/STAT3 signaling to promote fibrosis, and meanwhile to transcriptionally modulate the levels of BMP4 and HGF in myofibroblasts. Moreover, we find that CXCL16 and CXCR6 auto- and cross-regulate themselves in positive feedback loops. Treatment with CXCL16 neutralizing monoclonal antibody attenuates fibrosis and improves the epithelial repair in RE mouse model. Our findings emphasize the important role of CXCL16 in the progression of RE, and suggest that CXCL16 signaling could be a potential therapeutic target for RE. This article is protected by
Molecular nutrition & food research
May, S;Greenow, KR;Higgins, AT;Derrick, AV;Taylor, E;Pan, P;Konstantinou, M;Nixon, C;Wooley, TE;Sansom, OJ;Wang, LS;Parry, L;
PMID: 36045438 | DOI: 10.1002/mnfr.202200234
Black raspberries (BRBs) have colorectal cancer (CRC) chemo-preventative effects. As CRC originates from an intestinal stem cell (ISC) this study has investigated the impact of BRBs on normal and mutant ISCs.Mice with an inducible Apcfl mutation in either the ISC (Lgr5CreERT2 ) or intestinal crypt (AhCre/VillinCreERT2 ) are fed a control or 10% BRB-supplemented diet. This study uses immunohistochemistry, gene expression analysis, and organoid culture to evaluate the effect of BRBs on intestinal homeostasis. RNAscope is performed for ISC markers on CRC adjacent normal colonic tissue pre and post BRB intervention from patients. 10% BRB diet has no overt effect on murine intestinal homeostasis, despite a reduced stem cell number. Following Apc ISC deletion, BRB diet extends lifespan and reduces tumor area. In the AhCre model, BRB diet attenuates the "crypt-progenitor" phenotype and reduces ISC marker gene expression. In ex vivo culture BRBs reduce the self-renewal capacity of murine and human Apc deficient organoids. Finally, the study observes a reduction in ISC marker gene expression in adjacent normal crypts following introduction of BRBs to the human bowel.BRBs play a role in CRC chemoprevention by protectively regulating the ISC compartment and further supports the use of BRBs in CRC prevention.
Single-cell RNA sequencing of human nail unit defines RSPO4 onychofibroblasts and SPINK6 nail epithelium
Kim, HJ;Shim, JH;Park, JH;Shin, HT;Shim, JS;Jang, KT;Park, WY;Lee, KH;Kwon, EJ;Jang, HS;Yang, H;Lee, JH;Yang, JM;Lee, D;
PMID: 34099859 | DOI: 10.1038/s42003-021-02223-w
Research on human nail tissue has been limited by the restricted access to fresh specimen. Here, we studied transcriptome profiles of human nail units using polydactyly specimens. Single-cell RNAseq with 11,541 cells from 4 extra digits revealed nail-specific mesenchymal and epithelial cell populations, characterized by RSPO4 (major gene in congenital anonychia) and SPINK6, respectively. In situ RNA hybridization demonstrated the localization of RSPO4, MSX1 and WIF1 in onychofibroblasts suggesting the activation of WNT signaling. BMP-5 was also expressed in onychofibroblasts implicating the contribution of BMP signaling. SPINK6 expression distinguished the nail-specific keratinocytes from epidermal keratinocytes. RSPO4+ onychofibroblasts were distributed at close proximity with LGR6+ nail matrix, leading to WNT/β-catenin activation. In addition, we demonstrated RSPO4 was overexpressed in the fibroblasts of onychomatricoma and LGR6 was highly expressed at the basal layer of the overlying epithelial component, suggesting that onychofibroblasts may play an important role in the pathogenesis of onychomatricoma.
Human Type II Taste Cells Express ACE2 and are Infected by SARS-CoV-2
The American journal of pathology
Doyle, ME;Appleton, A;Liu, QR;Yao, Q;Mazucanti, CH;Egan, JM;
PMID: 34102107 | DOI: 10.1016/j.ajpath.2021.05.010
Chemosensory changes are well-reported symptoms of SARS-CoV-2 infection. The virus targets cells for entry by binding of its spike protein to cell-surface angiotensin-converting enzyme- 2 (ACE2). It was not known whether ACE2 is expressed on taste receptor cells (TRCs) nor if TRCs are infected directly. Using an in-situ hybridization (ISH) probe and an antibody specific to ACE2, ACE2 is present on a subpopulation of TRCs, namely, Type II cells in taste buds in taste papillae. Fungiform papillae (FP) of a SARS-CoV-2+ patient exhibiting symptoms of COVID-19, including taste changes, were biopsied. Based on ISH, replicating SARS-CoV-2 was present in Type II cells. Therefore, taste Type II cells provide a potential portal for viral entry that predicts vulnerabilities to SARS-CoV-2 in the oral cavity. The continuity and cell turnover of the patient's FP taste stem cell layer were disrupted during infection and had not completely recovered 6 weeks post symptom onset. Another patient suffering post-COVID-19 taste disturbances also had disrupted stem cells. These results demonstrate the possibility that novel and sudden taste changes frequently reported in COVID-19 may be the result of direct infection of taste papillae by SARS-CoV-2. This may result in impaired taste receptor stem cell activity and suggest more work is needed to understand the acute and post-acute dynamics of viral kinetics in the human taste bud.