Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (7)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • SARS-CoV-2 (113) Apply SARS-CoV-2 filter
  • V-nCoV2019-S (30) Apply V-nCoV2019-S filter
  • SARS-CoV-2  (13) Apply SARS-CoV-2  filter
  • Ace2 (10) Apply Ace2 filter
  • TBD (8) Apply TBD filter
  • (-) Remove V-nCoV2019-orf1ab-sense filter V-nCoV2019-orf1ab-sense (5)
  • SARS-CoV-2 S (5) Apply SARS-CoV-2 S filter
  • CD68 (4) Apply CD68 filter
  • TMPRSS2 (4) Apply TMPRSS2 filter
  • V-nCoV2019-S-sense (4) Apply V-nCoV2019-S-sense filter
  • SARS-CoV-2 spike (4) Apply SARS-CoV-2 spike filter
  • Il-6 (3) Apply Il-6 filter
  • V-nCoV-2019-S (3) Apply V-nCoV-2019-S filter
  • Rbfox3 (2) Apply Rbfox3 filter
  • IL1B (2) Apply IL1B filter
  • IL6 (2) Apply IL6 filter
  • Ifnb1 (2) Apply Ifnb1 filter
  • (-) Remove Sftpc filter Sftpc (2)
  • nCoV2019-S (2) Apply nCoV2019-S filter
  • nCoV2019-S-sense (2) Apply nCoV2019-S-sense filter
  • hACE2 (2) Apply hACE2 filter
  • Cxc19 (2) Apply Cxc19 filter
  • SARS‐CoV‐2 (2) Apply SARS‐CoV‐2 filter
  • SARS- CoV-2 (2) Apply SARS- CoV-2 filter
  • Axin2 (1) Apply Axin2 filter
  • CCL5 (1) Apply CCL5 filter
  • C1qa (1) Apply C1qa filter
  • CFB (1) Apply CFB filter
  • Wnt5a (1) Apply Wnt5a filter
  • KRT18 (1) Apply KRT18 filter
  • Ccl2 (1) Apply Ccl2 filter
  • CXCL10 (1) Apply CXCL10 filter
  • ADCY3 (1) Apply ADCY3 filter
  • Tnf (1) Apply Tnf filter
  • EPCAM (1) Apply EPCAM filter
  • FLT1 (1) Apply FLT1 filter
  • GFAP (1) Apply GFAP filter
  • Omp (1) Apply Omp filter
  • Casp1 (1) Apply Casp1 filter
  • Mpo (1) Apply Mpo filter
  • KIT (1) Apply KIT filter
  • LCN2 (1) Apply LCN2 filter
  • PECAM1 (1) Apply PECAM1 filter
  • MCAM (1) Apply MCAM filter
  • PDGFRA (1) Apply PDGFRA filter
  • PPIB (1) Apply PPIB filter
  • 16SrRNA (1) Apply 16SrRNA filter
  • Cd163 (1) Apply Cd163 filter
  • VWF (1) Apply VWF filter
  • WNT2 (1) Apply WNT2 filter

Product

  • RNAscope 2.5 HD Brown Assay (2) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope Multiplex Fluorescent Assay (2) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope 2.5 HD Duplex (1) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 LS Assay (1) Apply RNAscope 2.5 LS Assay filter
  • RNAscope Multiplex Fluorescent v2 (1) Apply RNAscope Multiplex Fluorescent v2 filter

Research area

  • (-) Remove Covid filter Covid (7)
  • Infectious (3) Apply Infectious filter
  • Fibrosis (1) Apply Fibrosis filter
  • Inflammation (1) Apply Inflammation filter
  • Lung (1) Apply Lung filter
  • Reproduction (1) Apply Reproduction filter

Category

  • Publications (7) Apply Publications filter
Murine Coronavirus Disease 2019 Lethality Is Characterized by Lymphoid Depletion Associated with Suppressed Antigen-Presenting Cell Functionality

The American journal of pathology

2023 Apr 05

Lee, YJ;Seok, SH;Lee, NY;Choi, HJ;Lee, YW;Chang, HJ;Hwang, JY;On, DI;Noh, HA;Lee, SB;Kwon, HK;Yun, JW;Shin, JS;Seo, JY;Nam, KT;Lee, H;Lee, HY;Park, JW;Seong, JK;
PMID: 37024046 | DOI: 10.1016/j.ajpath.2023.03.008

The disease severity of coronavirus disease 2019 (COVID-19) varies considerably from asymptomatic to serious, with fatal complications associated with dysregulation of innate and adaptive immunity. Lymphoid depletion in lymphoid tissues and lymphocytopenia have both been associated with poor disease outcomes in patients with COVID-19, but the mechanisms involved remain elusive. In this study, human angiotensin-converting enzyme 2 (hACE2) transgenic mouse models susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection were used to investigate the characteristics and determinants of lethality associated with the lymphoid depletion observed in SARS-CoV-2 infection. The lethality of Wuhan SARS-CoV-2 infection in K18-hACE2 mice was characterized by severe lymphoid depletion and apoptosis in lymphoid tissues related to fatal neuroinvasion. The lymphoid depletion was associated with a decreased number of antigen-presenting cells (APCs) and their suppressed functionality below basal levels. Lymphoid depletion with reduced APC function was a specific feature observed in SARS-CoV-2 infection but not in influenza A infection and had the greatest prognostic value for disease severity in murine COVID-19. Comparison of transgenic mouse models resistant and susceptible to SARS-CoV-2 infection revealed that suppressed APC function could be determined by the hACE2 expression pattern and interferon-related signaling. Thus, we demonstrated that lymphoid depletion associated with suppressed APC function characterizes the lethality of COVID-19 mouse models. Our data also suggest a potential therapeutic approach to prevent the severe progression of COVID-19 by enhancing APC functionality.
Hypercapnia alters stromal-derived Wnt production limiting β-catenin signaling and proliferation in alveolar type 2 cells

JCI insight

2023 Jan 10

Dada, LA;Welch, LC;Magnani, ND;Ren, Z;Han, H;Brazee, PL;Celli, D;Flozak, AS;Weng, A;Herrerias, MM;Kryvenko, V;Vadász, I;Runyan, CE;Abdala-Valencia, H;Shigemura, M;Casalino-Matsuda, SM;Misharin, AV;Budinger, GRS;Gottardi, CJ;Sznajder, JI;
PMID: 36626234 | DOI: 10.1172/jci.insight.159331

Persistent symptoms and radiographic abnormalities suggestive of failed lung repair are among the most common symptoms in patients with COVID-19 after hospital discharge. In mechanically ventilated patients with ARDS secondary to SARS-CoV-2 pneumonia, low tidal volumes to reduce ventilator-induced lung injury necessarily elevate blood CO2 levels, often leading to hypercapnia. The role of hypercapnia on lung repair after injury is not completely understood. Here, using a mouse model of hypercapnia exposure, cell lineage-tracing, spatial transcriptomics and 3D-cultures, we show that hypercapnia limits β-catenin signaling in AT2 cells, leading to their reduced proliferative capacity. Hypercapnia alters expression of major Wnts in PDGFRα+-fibroblasts from those maintaining AT2 progenitor activity towards those that antagonize β-catenin signaling thereby limiting progenitor function. Constitutive activation of β-catenin signaling in AT2 cells or treatment of organoid cultures with recombinant WNT3A protein bypasses the inhibitory effects of hypercapnia. Inhibition of AT2 proliferation in hypercapnic patients may contribute to impaired lung repair after injury, preventing sealing of the epithelial barrier, increasing lung flooding, ventilator dependency and mortality.  .
Rapid endotheliitis and vascular damage characterize SARS-CoV-2 infection in a human lung-on-chip model

EMBO reports

2021 Apr 28

Thacker, VV;Sharma, K;Dhar, N;Mancini, GF;Sordet-Dessimoz, J;McKinney, JD;
PMID: 33908688 | DOI: 10.15252/embr.202152744

Severe cases of SARS-CoV-2 infection are characterized by hypercoagulopathies and systemic endotheliitis of the lung microvasculature. The dynamics of vascular damage, and whether it is a direct consequence of endothelial infection or an indirect consequence of an immune cell-mediated cytokine storm remain unknown. Using a vascularized lung-on-chip model, we find that infection of alveolar epithelial cells leads to limited apical release of virions, consistent with reports of monoculture infection. However, viral RNA and proteins are rapidly detected in underlying endothelial cells, which are themselves refractory to apical infection in monocultures. Although endothelial infection is unproductive, it leads to the formation of cell clusters with low CD31 expression, a progressive loss of barrier integrity and a pro-coagulatory microenvironment. Viral RNA persists in individual cells generating an inflammatory response, which is transient in epithelial cells but persistent in endothelial cells and typified by IL-6 secretion even in the absence of immune cells. Inhibition of IL-6 signalling with tocilizumab reduces but does not prevent loss of barrier integrity. SARS-CoV-2-mediated endothelial cell damage thus occurs independently of cytokine storm.
Variable levels of spike and ORF1ab RNA in post-mortem lung samples of SARS-CoV-2-positive subjects: comparison between ISH and RT-PCR

Virchows Archiv : an international journal of pathology

2022 Feb 01

Zito Marino, F;De Cristofaro, T;Varriale, M;Zannini, G;Ronchi, A;La Mantia, E;Campobasso, CP;De Micco, F;Mascolo, P;Municinò, M;Municinò, E;Vestini, F;Pinto, O;Moccia, M;De Stefano, N;Nappi, O;Sementa, C;Zotti, G;Pianese, L;Giordano, C;Franco, R;
PMID: 35103846 | DOI: 10.1007/s00428-021-03262-8

Post-mortem examination plays a pivotal role in understanding the pathobiology of the SARS-CoV-2; thus, the optimization of virus detection on the post-mortem formalin-fixed paraffin-embedded (FFPE) tissue is needed. Different techniques are available for the identification of the SARS-CoV-2, including reverse transcription polymerase chain reaction (RT-PCR), immunohistochemistry (IHC), in situ hybridization (ISH), and electron microscopy. The main goal of this study is to compare ISH versus RT-PCR to detect SARS-CoV-2 on post-mortem lung samples of positive deceased subjects. A total of 27 samples were analyzed by RT-PCR targeting different viral RNA sequences of SARS-CoV-2, including envelope (E), nucleocapsid (N), spike (S), and open reading frame (ORF1ab) genes and ISH targeting S and Orf1ab. All 27 cases showed the N gene amplification, 22 out of 27 the E gene amplification, 26 out of 27 the S gene amplification, and only 6 the ORF1ab gene amplification. The S ISH was positive only in 12 out of 26 cases positive by RT-PCR. The S ISH positive cases with strong and diffuse staining showed a correlation with low values of the number of the amplification cycles by S RT-PCR suggesting that ISH is a sensitive assay mainly in cases carrying high levels of S RNA. In conclusion, our findings demonstrated that ISH assay has lower sensitivity to detect SARS-CoV-2 in FFPE compared to RT-PCR; however, it is able to localize the virus in the cellular context since it preserves the morphology.
SARS-CoV-2 infects the human kidney and drives fibrosis in kidney organoids

Cell Stem Cell

2021 Dec 01

Jansen, J;Reimer, K;Nagai, J;Varghese, F;Overheul, G;de Beer, M;Roverts, R;Daviran, D;Fermin, L;Willemsen, B;Beukenboom, M;Djudjaj, S;von Stillfried, S;van Eijk, L;Mastik, M;Bulthuis, M;Dunnen, W;van Goor, H;Hillebrands, J;Triana, S;Alexandrov, T;Timm, M;Tideman van den Berge, B;van den Broek, M;Nlandu, Q;Heijnert, J;Bindels, E;Hoogenboezem, R;Mooren, F;Kuppe, C;Miesen, P;Grünberg, K;Ijzermans, T;Steenbergen, E;Czogalla, J;Schreuder, M;Sommerdijk, N;Akiva, A;Boor, P;Puelles, V;Floege, J;Huber, T;van Rij, R;Costa, I;Schneider, R;Smeets, B;Kramann, R;
| DOI: 10.1016/j.stem.2021.12.010

Kidney failure is frequently observed during and after COVID-19, but it remains elusive whether this is a direct effect of the virus. Here, we report that SARS-CoV-2 directly infects kidney cells and is associated with increased tubule-interstitial kidney fibrosis in patient autopsy samples. To study direct effects of the virus on the kidney independent of systemic effects of COVID-19, we infected human induced pluripotent stem cell-derived kidney organoids with SARS-CoV-2. Single cell RNA-sequencing indicated injury and dedifferentiation of infected cells with activation of pro-fibrotic signaling pathways. Importantly, SARS-CoV-2 infection also led to increased collagen 1 protein expression in organoids. A SARS-CoV-2 protease inhibitor was able to ameliorate the infection of kidney cells by SARS-CoV-2. Our results suggest that SARS-CoV-2 can directly infect kidney cells and induce cell injury with subsequent fibrosis. These data could explain both acute kidney injury in COVID-19 patients and the development of chronic kidney disease in Long-COVID.
SARS-COV2 placentitis and pregnancy outcome: A multicentre experience during the Alpha and early Delta waves of coronavirus pandemic in England

EClinicalMedicine

2022 May 01

Stenton, S;McPartland, J;Shukla, R;Turner, K;Marton, T;Hargitai, B;Bamber, A;Pryce, J;Peres, CL;Burguess, N;Wagner, B;Ciolka, B;Simmons, W;Hurrell, D;Sekar, T;Moldovan, C;Trayers, C;Bryant, V;Palm, L;Cohen, MC;
PMID: 35465646 | DOI: 10.1016/j.eclinm.2022.101389

Pregnant women with SARS-CoV-2 infection experience higher rates of stillbirth and preterm birth. A unique pattern of chronic histiocytic intervillositis (CHI) and/or massive perivillous fibrin deposition (MPFD) has emerged, coined as SARS-CoV-2 placentitis.The aim of this study was to describe a cohort of placentas diagnosed with SARS-CoV-2 placentitis during October 2020-March 2021. Cases with a histological diagnosis of SARS-CoV-2 placentitis and confirmatory immunohistochemistry were reported. Maternal demographic data, pregnancy outcomes and placental findings were collected.59 mothers delivered 61 infants with SARS-CoV-2 placentitis. The gestational age ranged from 19 to 41 weeks with most cases (78.6%) being third trimester. 30 infants (49.1%) were stillborn or late miscarriages. Obese mothers had higher rates of pregnancy loss when compared with those with a BMI <30 [67% (10/15) versus 41% (14/34)]. 47/59 (79.7%) mothers had a positive SARS-CoV-2 PCR test either at the time of labour or in the months before, of which 12 (25.5%) were reported to be asymptomatic. Ten reported only CHI, two cases showed MPFD only and in 48 placentas both CHI and MPFD was described.SARS-CoV2 placentitis is a distinct entity associated with increased risk of pregnancy loss, particularly in the third trimester. Women can be completely asymptomatic and still experience severe placentitis. Unlike 'classical' MPFD, placentas with SARS-CoV-2 are generally normal in size with adequate fetoplacental weight ratios. Further work should establish the significance of the timing of maternal SARS-CoV-2 infection and placentitis, the significance of SARS-CoV2 variants, and rates of vertical transmission associated with this pattern of placental inflammation.There was not funding associated with this study.
SARS-CoV-2 infection of the oral cavity and saliva

Nature medicine

2021 Mar 25

Huang, N;Pérez, P;Kato, T;Mikami, Y;Okuda, K;Gilmore, RC;Conde, CD;Gasmi, B;Stein, S;Beach, M;Pelayo, E;Maldonado, JO;Lafont, BA;Jang, SI;Nasir, N;Padilla, RJ;Murrah, VA;Maile, R;Lovell, W;Wallet, SM;Bowman, NM;Meinig, SL;Wolfgang, MC;Choudhury, SN;Novotny, M;Aevermann, BD;Scheuermann, RH;Cannon, G;Anderson, CW;Lee, RE;Marchesan, JT;Bush, M;Freire, M;Kimple, AJ;Herr, DL;Rabin, J;Grazioli, A;Das, S;French, BN;Pranzatelli, T;Chiorini, JA;Kleiner, DE;Pittaluga, S;Hewitt, SM;Burbelo, PD;Chertow, D;NIH COVID-19 Autopsy Consortium, ;HCA Oral and Craniofacial Biological Network, ;Frank, K;Lee, J;Boucher, RC;Teichmann, SA;Warner, BM;Byrd, KM;
PMID: 33767405 | DOI: 10.1038/s41591-021-01296-8

Despite signs of infection-including taste loss, dry mouth and mucosal lesions such as ulcerations, enanthema and macules-the involvement of the oral cavity in coronavirus disease 2019 (COVID-19) is poorly understood. To address this, we generated and analyzed two single-cell RNA sequencing datasets of the human minor salivary glands and gingiva (9 samples, 13,824 cells), identifying 50 cell clusters. Using integrated cell normalization and annotation, we classified 34 unique cell subpopulations between glands and gingiva. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral entry factors such as ACE2 and TMPRSS members were broadly enriched in epithelial cells of the glands and oral mucosae. Using orthogonal RNA and protein expression assessments, we confirmed SARS-CoV-2 infection in the glands and mucosae. Saliva from SARS-CoV-2-infected individuals harbored epithelial cells exhibiting ACE2 and TMPRSS expression and sustained SARS-CoV-2 infection. Acellular and cellular salivary fractions from asymptomatic individuals were found to transmit SARS-CoV-2 ex vivo. Matched nasopharyngeal and saliva samples displayed distinct viral shedding dynamics, and salivary viral burden correlated with COVID-19 symptoms, including taste loss. Upon recovery, this asymptomatic cohort exhibited sustained salivary IgG antibodies against SARS-CoV-2. Collectively, these data show that the oral cavity is an important site for SARS-CoV-2 infection and implicate saliva as a potential route of SARS-CoV-2 transmission.
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?