Porcu, A;Nilsson, A;Booreddy, S;Barnes, SA;Welsh, DK;Dulcis, D;
PMID: 36054362 | DOI: 10.1126/sciadv.abn9867
Seasonal changes in day length (photoperiod) affect numerous physiological functions. The suprachiasmatic nucleus (SCN)-paraventricular nucleus (PVN) axis plays a key role in processing photoperiod-related information. Seasonal variations in SCN and PVN neurotransmitter expression have been observed in humans and animal models. However, the molecular mechanisms by which the SCN-PVN network responds to altered photoperiod is unknown. Here, we show in mice that neuromedin S (NMS) and vasoactive intestinal polypeptide (VIP) neurons in the SCN display photoperiod-induced neurotransmitter plasticity. In vivo recording of calcium dynamics revealed that NMS neurons alter PVN network activity in response to winter-like photoperiod. Chronic manipulation of NMS neurons is sufficient to induce neurotransmitter switching in PVN neurons and affects locomotor activity. Our findings reveal previously unidentified molecular adaptations of the SCN-PVN network in response to seasonality and the role for NMS neurons in adjusting hypothalamic function to day length via a coordinated multisynaptic neurotransmitter switching affecting behavior.
Molecular Neuropsychiatry
Hu X,. Rocco BR, Fee C, Sibille E.
PMID: - | DOI: 10.1159/000495840
Converging evidence suggests that deficits in somatostatin (SST)-expressing neuron signaling contributes to major depressive disorder. Preclinical studies show that enhancing this signaling, specifically at α5 subunit-containing γ-aminobutyric acid subtype A receptors (α5-GABAARs), provides a potential means to overcome low SST neuron function. The cortical microcircuit comprises multiple subtypes of inhibitory γ-aminobutyric acid (GABA) neurons and excitatory pyramidal cells (PYCs). In this study, multilabel fluorescence in situ hybridization was used to characterize α5-GABAAR gene expression in PYCs and three GABAergic neuron subgroups – vasoactive intestinal peptide (VIP)-, SST-, and parvalbumin (PV)-expressing cells – in the human and mouse frontal cortex. Across species, we found the majority of gene expression in PYCs (human: 39.7%; mouse: 54.14%), less abundant expression in PV neurons (human: 20%; mouse: 16.33%), and no expression in VIP neurons (0%). Only human SST cells expressed GABRA5, albeit at low levels (human: 8.3%; mouse: 0%). Together, this localization suggests potential roles for α5-GABAARs within the cortical microcircuit: (1) regulators of PYCs, (2) regulators of PV cell activity across species, and (3) sparse regulators of SST cell inhibition in humans. These results will advance our ability to predict the effects of pharmacological agents targeting α5-GABAARs, which have shown therapeutic potential in preclinical animal models.
Li, K;Shi, Y;Gonye, EC;Bayliss, DA;
PMID: 34732535 | DOI: 10.1523/ENEURO.0212-21.2021
Select neuronal populations display steady rhythmic neuronal firing that provides tonic excitation to drive downstream networks and behaviors. In noradrenergic neurons of the locus coeruleus (LC), circadian neurons of the suprachiasmatic nucleus (SCN), and CO2/H+-activated neurons of the brainstem retrotrapezoid nucleus (RTN), large subthreshold membrane potential oscillations contribute to the pacemaker-like action potential discharge. The oscillations and firing in LC and SCN involve contributions from leak sodium (NALCN) and L-type calcium channels while recent work from RTN suggested an additional pivotal role for a secondary calcium-activated and voltage-gated cationic current sensitive to TRPM4 channel blockers. Here, we tested whether TRPM4 contributes to subthreshold oscillations in mouse LC and SCN. By RNAscope in situ hybridization, Trpm4 transcripts were detected in both cell groups. In whole-cell recordings from acute slice preparations, prominent voltage-dependent membrane potential oscillations were revealed in LC and SCN after blocking action potentials. These oscillations were inhibited by two chemically-distinct blockers of TRPM4, 9-phenanthrol (9-pt) and 4-chloro-2-[[2-(2-chlorophenoxy)acetyl]amino]benzoic acid (CBA). Under whole-cell voltage clamp, inward currents evoked by oscillation voltage waveforms were inhibited in LC by blocking L-type calcium channels and TRPM4. These data implicate TRPM4 in the large subthreshold membrane potential oscillations that underlie tonic action potential discharge in LC and SCN, providing a voltage-dependent and calcium-dependent cationic current to augment the depolarizing inward Na+ and Ca2+ currents previously associated with this distinctive electroresponsive property.
Severino A, Chen W, Hakimian JK, Kieffer BL, Gaveriaux-Ruff C, Walwyn W, Marvizón JCG.
PMID: 29677019 | DOI: 10.1097/j.pain.0000000000001247
The latent sensitization model of chronic pain reveals that recovery from some types of long-term hyperalgesia is an altered state in which nociceptive sensitization persists but is suppressed by the ongoing activity of analgesic receptors such as μ-opioid receptors (MORs). To determine whether these MORs are the ones present in nociceptive afferents, we bred mice expressing Cre-recombinase under the Nav1.8 channel promoter (Nav1.8cre) with MOR-floxed mice (flMOR). These Nav1.8cre/flMOR mice had reduced MOR expression in primary afferents, as revealed by quantitative PCR, in situ hybridization, and immunofluorescence colocalization with the neuropeptide calcitonin gene-related peptide. We then studied the recovery from chronic pain of these mice and their flMOR littermates. When Nav1.8cre/flMOR mice were injected in the paw with complete Freund adjuvant they developed mechanical hyperalgesia that persisted for more than 2 months, whereas the responses of flMOR mice returned to baseline after 3 weeks. We then used the inverse agonist naltrexone to assess ongoing MOR activity. Naltrexone produced a robust reinstatement of hyperalgesia in control flMOR mice, but produced no effect in the Nav1.8/flMOR males and a weak reinstatement of hyperalgesia in Nav1.8/flMOR females. Naltrexone also reinstated swelling of the hind paw in flMOR mice and female Nav1.8cre/flMOR mice, but not male Nav1.8cre/flMOR mice. The MOR agonist DAMGO inhibited substance P release in flMOR mice but not Nav1.8cre/flMOR mice, demonstrating a loss of MOR function at the central terminals of primary afferents. We conclude that MORs in nociceptive afferents mediate an ongoing suppression of hyperalgesia to produce remission from chronic pain.
Somatostatin Interneurons of the Insula Mediate QR2-Dependent Novel Taste Memory Enhancement
Gould, NL;Kolatt Chandran, S;Kayyal, H;Edry, E;Rosenblum, K;
PMID: 34518366 | DOI: 10.1523/ENEURO.0152-21.2021
Forming long-term memories is crucial for adaptive behavior and survival in changing environments. The molecular consolidation processes which underlie the formation of these long-term memories are dependent on protein synthesis in excitatory and SST-expressing neurons. A centrally important, parallel process to this involves the removal of the memory constraint quinone reductase 2 (QR2), which has been recently shown to enhance memory consolidation for novel experiences in the cortex and hippocampus, via redox modulation. However, it is unknown within which cell type in the cortex removal of QR2 occurs, nor how this affects neuronal function. Here, we use novel taste learning in the mouse anterior insular cortex (aIC) to show that similarly to mRNA translation, QR2 removal occurs in excitatory and SST-expressing neurons. Interestingly, both novel taste and QR2 inhibition reduce excitability specifically within SST, but not excitatory neurons. Furthermore, reducing QR2 expression in SST, but not in PV or excitatory neurons, is sufficient to enhance taste memory. Thus, QR2 mediated intrinsic property changes of SST interneurons in the aIC is a central removable factor to allow novel taste memory formation. This previously unknown involvement of QR2 and SST interneurons in resetting aIC activity hours following learning, describes a molecular mechanism to define cell circuits for novel information. Therefore, the QR2 pathway in SST interneurons provides a fresh new avenue by which to tackle age-related cognitive deficits, while shedding new light onto the functional machinations of long-term memory formation for novel information.
bioRxiv : the preprint server for biology
Shiers, S;Sahn, JJ;Price, TJ;
PMID: 36711529 | DOI: 10.1101/2023.01.04.522773
Mitogen activated protein kinase interacting kinases (MNK) 1 and 2 are serine/threonine protein kinases that play an important role in translation of mRNAs through their phosphorylation of the RNA 5†-cap binding protein, eukaryotic translation initiation factor (eIF) 4E. These kinases are downstream targets for mitogen activated protein kinases (MAPKs), extracellular activity regulated protein kinase (ERK) and p38. MNKs have been implicated in the sensitization of peripheral nociceptors of the dorsal root and trigeminal ganglion (DRG and TG) using transgenic mouse lines and through the use of specific inhibitors of MNK1 and MNK2. While specific knockout of the Mknk1 gene suggests that it is the key isoform for regulation of nociceptor excitability and nociceptive behaviors in mice, both MKNK1 and MKNK2 genes are expressed in the DRG and TG of mice and humans based on RNA sequencing experiments. Single cell sequencing in mice suggests that Mknk1 and Mknk2 may be expressed in different populations of nociceptors. We sought to characterize mRNA expression in human DRG and TG for both MNK1 and MNK2. Our results show that both genes are expressed by nearly all neurons in both human ganglia with expression in other cell types as well. Our findings provide evidence that MNK1 and MNK2 are expressed by human nociceptors and suggest that efforts to pharmacologically target MNKs for pain would likely be translatable due its conserved expression in both species.
Newton, D;Oh, H;Shukla, R;Misquitta, K;Fee, C;Banasr, M;Sibille, E;
| DOI: 10.1016/j.biopsych.2021.10.015
Introduction Information processing in cortical cell microcircuits involves regulation of excitatory pyramidal (PYR) cells by inhibitory Somatostatin- (SST), Parvalbumin- (PV), and Vasoactive intestinal peptide- (VIP) expressing interneurons. Human post-mortem and rodent studies show impaired PYR-cell dendritic morphology and decreased SST-cell markers in MDD or after chronic stress. However, knowledge of coordinated changes across microcircuit cell-types is virtually absent. Methods We investigated the transcriptomic effects of unpredictable chronic mild stress (UCMS) on distinct microcircuit cell-types in the medial prefrontal cortex (Cingulate regions 24a/b and 32) in mice. C57Bl/6 mice, exposed to UCMS or control housing for five weeks, were assessed for anxiety- and depressive-like behaviors. Microcircuit cell-types were laser-microdissected and processed for RNA-sequencing. Results UCMS induced predicted elevations in behavioral emotionality in mice. DESeq2 analysis revealed unique differentially-expressed genes in each cell-type after UCMS. Pre-synaptic functions, oxidative stress response, metabolism, and translational regulation were differentially dysregulated across cell-types, whereas nearly all cell-types showed downregulated post-synaptic gene signatures. Across the cortical microcircuit, we observed a shift from a distributed transcriptomic coordination across cell-types in controls towards UCMS-induced increased coordination between PYR-, SST- and PV-cells, and hub-like role for PYR-cells. Lastly, we identified a microcircuit-wide coexpression network enriched in synaptic, bioenergetic, and oxidative stress response genes that correlated with UCMS-induced behaviors. Conclusions These findings suggest cell-specific deficits, microcircuit-wide synaptic reorganization, and a shift in cells regulating the cortical excitation-inhibition balance, suggesting increased coordinated regulation of PYR-cells by SST- and PV-cells.
Roethler, O;Zohar, E;Cohen-Kashi Malina, K;Bitan, L;Gabel, HW;Spiegel, I;
PMID: 37354902 | DOI: 10.1016/j.neuron.2023.05.026
Experience-dependent plasticity of synapses modulates information processing in neural circuits and is essential for cognitive functions. The genome, via non-coding enhancers, was proposed to control information processing and circuit plasticity by regulating experience-induced transcription of genes that modulate specific sets of synapses. To test this idea, we analyze here the cellular and circuit functions of the genomic mechanisms that control the experience-induced transcription of Igf1 (insulin-like growth factor 1) in vasoactive intestinal peptide (VIP) interneurons (INs) in the visual cortex of adult mice. We find that two sensory-induced enhancers selectively and cooperatively drive the activity-induced transcription of Igf1 to thereby promote GABAergic inputs onto VIP INs and to homeostatically control the ratio between excitation and inhibition (E/I ratio)-in turn, this restricts neural activity in VIP INs and principal excitatory neurons and maintains spatial frequency tuning. Thus, enhancer-mediated activity-induced transcription maintains sensory processing in the adult cortex via homeostatic modulation of E/I ratio.
Batiuk, MY;Tyler, T;Dragicevic, K;Mei, S;Rydbirk, R;Petukhov, V;Deviatiiarov, R;Sedmak, D;Frank, E;Feher, V;Habek, N;Hu, Q;Igolkina, A;Roszik, L;Pfisterer, U;Garcia-Gonzalez, D;Petanjek, Z;Adorjan, I;Kharchenko, PV;Khodosevich, K;
PMID: 36223459 | DOI: 10.1126/sciadv.abn8367
Schizophrenia is one of the most widespread and complex mental disorders. To characterize the impact of schizophrenia, we performed single-nucleus RNA sequencing (snRNA-seq) of >220,000 neurons from the dorsolateral prefrontal cortex of patients with schizophrenia and matched controls. In addition, >115,000 neurons were analyzed topographically by immunohistochemistry. Compositional analysis of snRNA-seq data revealed a reduction in abundance of GABAergic neurons and a concomitant increase in principal neurons, most pronounced for upper cortical layer subtypes, which was substantiated by histological analysis. Many neuronal subtypes showed extensive transcriptomic changes, the most marked in upper-layer GABAergic neurons, including down-regulation in energy metabolism and up-regulation in neurotransmission. Transcription factor network analysis demonstrated a developmental origin of transcriptomic changes. Last, Visium spatial transcriptomics further corroborated upper-layer neuron vulnerability in schizophrenia. Overall, our results point toward general network impairment within upper cortical layers as a core substrate associated with schizophrenia symptomatology.
The Journal of clinical investigation
Defaye, M;Iftinca, MC;Gadotti, VM;Basso, L;Abdullah, NS;Cumenal, M;Agosti, F;Hassan, A;Flynn, R;Martin, J;Soubeyre, V;Poulen, G;Lonjon, N;Vachiery-Lahaye, F;Bauchet, L;Mery, PF;Bourinet, E;Zamponi, GW;Altier, C;
PMID: 35608912 | DOI: 10.1172/JCI154317
The anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase known for its oncogenic potential and involved in the development of the peripheral and central nervous system. ALK receptor ligands, ALKAL1 and ALKAL2 were recently found to promote neuronal differentiation and survival. Here we show that inflammation or injury enhanced ALKAL2 expression in a subset of TRPV1+ sensory neurons. Notably, ALKAL2 was particularly enriched in both mice and human peptidergic nociceptors, yet weakly expressed in non peptidergic, large diameter myelinated neurons or in the brain. Using a co-culture expression system, we found that nociceptors exposed to ALKAL2 exhibited heightened excitability and neurite outgrowth. Intraplantar Complete Freund's adjuvant (CFA) or intrathecal infusion of recombinant ALKAL2 led to ALK phosphorylation in the lumbar dorsal horn of the spinal cord. Finally, depletion of ALKAL2 in dorsal root ganglia or blocking ALK with clinically available compounds Crizotinib or Lorlatinib, reversed thermal hyperalgesia and mechanical allodynia induced by inflammation or nerve injury, respectively. Overall, our work uncovers the ALKAL2-ALK signaling axis as a central regulator of nociceptor-induced sensitization. We propose that clinically approved ALK inhibitors used for Non-Small Cell Lung Cancer and neuroblastomas, could be repurposed to treat persistent pain conditions.
International Journal of Molecular Sciences
Cheng, A;Fung, S;Hegazi, S;Abdalla, O;Cheng, H;
| DOI: 10.3390/ijms23010229
In mammals, the hypothalamic suprachiasmatic nucleus (SCN) functions as the central circadian pacemaker, orchestrating behavioral and physiological rhythms in alignment to the environmental light/dark cycle. The neurons that comprise the SCN are anatomically and functionally heterogeneous, but despite their physiological importance, little is known about the pathways that guide their specification and differentiation. Here, we report that the stem/progenitor cell transcription factor, Sex determining region Y-box 2 (Sox2), is required in the embryonic SCN to control the expression of SCN-enriched neuropeptides and transcription factors. Ablation of Sox2 in the developing SCN leads to downregulation of circadian neuropeptides as early as embryonic day (E) 15.5, followed by a decrease in the expression of two transcription factors involved in SCN development, Lhx1 and Six6, in neonates. Thymidine analog-retention assays revealed that Sox2 deficiency contributed to reduced survival of SCN neurons during the postnatal period of cell clearance, but did not affect progenitor cell proliferation or SCN specification. Our results identify SOX2 as an essential transcription factor for the proper differentiation and survival of neurons within the developing SCN.
Journal of chemical neuroanatomy
Beebe, NL;Silveira, MA;Goyer, D;Noftz, WA;Roberts, MT;Schofield, BR;
PMID: 36375740 | DOI: 10.1016/j.jchemneu.2022.102189
Neurons in the inferior colliculus (IC), the midbrain hub of the central auditory pathway, send ascending and descending projections to other auditory brain regions, as well as projections to other sensory and non-sensory brain regions. However, the axonal projection patterns of individual classes of IC neurons remain largely unknown. Vasoactive intestinal polypeptide (VIP) is a neuropeptide expressed by subsets of neurons in many brain regions. We recently identified a class of IC stellate neurons that we called VIP neurons because they are labeled by tdTomato (tdT) expression in VIP-IRES-Cre x Ai14 mice. Here, using fluorescence in situ hybridization, we found that tdT+ neurons in VIP-IRES-Cre x Ai14 mice express Vglut2, a marker of glutamatergic neurons, and VIP, suggesting that VIP neurons use both glutamatergic and VIPergic signaling to influence their postsynaptic targets. Next, using viral transfections with a Cre-dependent eGFP construct, we labeled the axonal projections of VIP neurons. As a group, VIP neurons project intrinsically, within the ipsilateral and contralateral IC, and extrinsically to all the major targets of the IC. Within the auditory system, VIP neurons sent axons and formed axonal boutons in higher centers, including the medial geniculate nucleus and the nucleus of the brachium of the IC. Less dense projections terminated in lower centers, including the nuclei of the lateral lemniscus, superior olivary complex, and dorsal cochlear nucleus. VIP neurons also project to several non-auditory brain regions, including the superior colliculus, periaqueductal gray, and cuneiform nucleus. The diversity of VIP projections compared to the homogeneity of VIP neuron intrinsic properties suggests that VIP neurons play a conserved role at the microcircuit level, likely involving neuromodulation through glutamatergic and VIPergic signaling, but support diverse functions at the systems level through their participation in different projection pathways.