ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
J Virol.
2018 Mar 21
Hsu DC, Sunyakumthorn P, Wegner M, Schuetz A, Silsorn D, Estes JD, Deleage C, Tomusange K, Lakhashe SK, Ruprecht RM, Lombardini E, Im-Erbsin R, Kuncharin Y, Phuang-Ngern Y, Inthawong D, Chuenarom W, Burke R, Robb ML, Ndhlovu LC, Ananworanich J, Valcour V,
PMID: 29563297 | DOI: 10.1128/JVI.00222-18
Studies utilizing highly pathogenic simian immunodeficiency virus (SIV) and simian-human immunodeficiency virus (SHIV) have largely focused on the immunopathology of the central nervous system (CNS) during end-stage neuro AIDS and SIV encephalitis. However, this may not model pathophysiology in earlier stages of infection. In this non-accelerated SHIV model, plasma SHIV RNA levels and peripheral blood and colonic CD4 T+ cell counts mirrored early HIV infection in humans. At 12 weeks post infection, cerebrospinal fluid (CSF) detection of SHIV RNA and elevations in IP-10 and MCP-1 reflected a discrete neurovirologic process. Immunohistochemical staining revealed a diffuse, low-level CD3+, CD4- cellular infiltrate in the brain parenchyma, without a concomitant increase in CD68/CD163+ monocytes, macrophages and activated microglial cells. Rare SHIV-infected cells in the brain parenchyma and meninges were identified by RNAscope®in situhybridization. In the meninges, there was also a trend toward increased CD4+ infiltration in SHIV-infected animals, but no differences in CD68/CD163+ cells between SHIV-infected and uninfected control animals. These data suggest that in a model that closely recapitulates human disease, CNS inflammation and SHIV in CSF may be predominantly mediated by T-cell mediated processes during early infection in both brain parenchyma and meninges. Because SHIV expresses an HIV rather than SIV envelope, this model could inform studies to understand potential HIV cure strategies targeting the HIV envelope.IMPORTANCE Animal models of the neurologic effects of HIV are needed because brain pathology is difficult to assess in humans. Many current models focus on the effects of late stage disease utilizing simian immunodeficiency virus (SIV). In the era of antiretroviral therapy, manifestations of late stage HIV are less common. Furthermore, new interventions such as monoclonal antibodies and therapeutic vaccinations target HIV envelope. We therefore describe a new model of central nervous system involvement in rhesus macaques infected with simian-human immunodeficiency virus (SHIV) expressing HIV envelope in earlier, less aggressive stages of disease. Here, we demonstrate that SHIV mimics the early clinical course in humans, and that early neurologic inflammation is characterized by predominantly T cell mediated inflammation, accompanied by SHIV infection in the brain and meninges. This model can be utilized to assess the effect of novel therapies targeted to HIV envelope on reducing brain inflammation before end stage disease.
AIDS.
2016 Aug 03
Gill AL, Green SA, Abdullah S, Le Saout C, Pittaluga S, Chen H, Turnier R, Lifson J, Godin S, Qin J, Sneller MC, Cuillerot JM, Sabzevari H, Lane HC, Catalfamo M.
PMID: 27490642 | DOI: 10.1097/QAD.0000000000001217
Antimicrob Agents Chemother. 2014 Nov;58(11):6790-806.
Del Prete GQ, Shoemaker R, Oswald K, Lara A, Trubey CM, Fast R, Schneider DK, Kiser R, Coalter V, Wiles A, Wiles R, Freemire B, Keele BF, Estes JD, Quiñones OA, Smedley J, Macallister R, Sanchez RI, Wai JS, Tan CM, Alvord WG, Hazuda DJ, Piatak M Jr, Lifs
PMID: 25182644 | DOI: 10.1128/AAC.03746-14.
Nonhuman primate models are needed for evaluations of proposed strategies targeting residual virus that persists in HIV-1-infected individuals receiving suppressive combination antiretroviral therapy (cART). However, relevant nonhuman primate (NHP) models of cART-mediated suppression have proven challenging to develop. We used a novel three-class, six-drug cART regimen to achieve durable 4.0- to 5.5-log reductions in plasma viremia levels and declines in cell-associated viral RNA and DNA in blood and tissues of simian immunodeficiency virus SIVmac239-infected Indian-origin rhesus macaques, then evaluated the impact of treatment with the histone deacetylase inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA; Vorinostat) on the residual virus pool. Ex vivo SAHA treatment of CD4(+) T cells obtained from cART-suppressed animals increased histone acetylation and viral RNA levels in culture supernatants. cART-suppressed animals each received 84 total doses of oral SAHA. We observed SAHA dose-dependent increases in acetylated histones with evidence for sustained modulation as well as refractoriness following prolonged administration. In vivo virologic activity was demonstrated based on the ratio of viral RNA to viral DNA in peripheral blood mononuclear cells, a presumptive measure of viral transcription, which significantly increased in SAHA-treated animals. However, residual virus was readily detected at the end of treatment, suggesting that SAHA alone may be insufficient for viral eradication in the setting of suppressive cART. The effects observed were similar to emerging data for repeat-dose SAHA treatment of HIV-infected individuals on cART, demonstrating the feasibility, utility, and relevance of NHP models of cART-mediated suppression for in vivo assessments of AIDS virus functional cure/eradication approaches.
Nature communications
2022 Mar 24
Paul, T;Ledderose, S;Bartsch, H;Sun, N;Soliman, S;Märkl, B;Ruf, V;Herms, J;Stern, M;Keppler, OT;Delbridge, C;Müller, S;Piontek, G;Kimoto, YS;Schreiber, F;Williams, TA;Neumann, J;Knösel, T;Schulz, H;Spallek, R;Graw, M;Kirchner, T;Walch, A;Rudelius, M;
PMID: 35332140 | DOI: 10.1038/s41467-022-29145-3
Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc
2022 Mar 31
Santos, A;Sauer, M;Neil, AJ;Solomon, IH;Hornick, JL;Roberts, DJ;Quade, BJ;Parra-Herran, C;
PMID: 35361888 | DOI: 10.1038/s41379-022-01061-3
Journal of the International AIDS Society
2022 Apr 01
Rosen, EP;Deleage, C;White, N;Sykes, C;Brands, C;Adamson, L;Luciw, P;Estes, JD;Kashuba, ADM;
PMID: 35441468 | DOI: 10.1002/jia2.25895
iScience
2022 May 20
Argueta, LB;Lacko, LA;Bram, Y;Tada, T;Carrau, L;Rendeiro, AF;Zhang, T;Uhl, S;Lubor, BC;Chandar, V;Gil, C;Zhang, W;Dodson, BJ;Bastiaans, J;Prabhu, M;Houghton, S;Redmond, D;Salvatore, CM;Yang, YJ;Elemento, O;Baergen, RN;tenOever, BR;Landau, NR;Chen, S;Schwartz, RE;Stuhlmann, H;
PMID: 35434541 | DOI: 10.1016/j.isci.2022.104223
Cell reports
2022 May 31
Foreman, TW;Nelson, CE;Kauffman, KD;Lora, NE;Vinhaes, CL;Dorosky, DE;Sakai, S;Gomez, F;Fleegle, JD;Parham, M;Perera, SR;Lindestam Arlehamn, CS;Sette, A;Tuberculosis Imaging Program, ;Brenchley, JM;Queiroz, ATL;Andrade, BB;Kabat, J;Via, LE;Barber, DL;
PMID: 35649361 | DOI: 10.1016/j.celrep.2022.110896
Blood Advances
2018 Jan 10
Webb GM, Li S, Mwakalundwa G, Folkvord JM, Greene JM, Reed JS, Stanton JJ, Legasse AW, Hobbs TH, Martin LD, Park BS, Whitney JB, Jeng EK, Wong HC, Nixon DF, Jones RB, Connick E, Skinner PJ, Sacha JB.
PMID: - | DOI: 10.1182/bloodadvances.2017012971
Sequestering of latent HIV in follicular helper T cells within B-cell follicles that largely exclude cytotoxic T cells is a major barrier to cellular immune-based approaches to eradicate HIV. Here, we show that the clinical-grade human interleukin-15 (IL-15) superagonist ALT-803 activates and redirects simian immunodeficiency virus (SIV)–specific CD8+ T cells from the peripheral blood into B-cell follicles. In agreement with the increased trafficking of SIV-specific cytotoxic T cells to sites of cryptic viral replication, lymph nodes of elite controlling macaques contained fewer cells expressing SIV RNA or harboring SIV DNA post–ALT-803 treatment. These data establish ALT-803 as an immunotherapeutic for HIV and other chronic viral pathogens that evade host immunity by persisting in B-cell follicles.
Nature metabolism
2022 Mar 01
Wanner, N;Andrieux, G;Badia-I-Mompel, P;Edler, C;Pfefferle, S;Lindenmeyer, MT;Schmidt-Lauber, C;Czogalla, J;Wong, MN;Okabayashi, Y;Braun, F;Lütgehetmann, M;Meister, E;Lu, S;Noriega, MLM;Günther, T;Grundhoff, A;Fischer, N;Bräuninger, H;Lindner, D;Westermann, D;Haas, F;Roedl, K;Kluge, S;Addo, MM;Huber, S;Lohse, AW;Reiser, J;Ondruschka, B;Sperhake, JP;Saez-Rodriguez, J;Boerries, M;Hayek, SS;Aepfelbacher, M;Scaturro, P;Puelles, VG;Huber, TB;
PMID: 35347318 | DOI: 10.1038/s42255-022-00552-6
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com