Infection and transmission of SARS-CoV-2 and its alpha variant in pregnant white-tailed deer
bioRxiv : the preprint server for biology
Cool, K;Gaudreault, NN;Morozov, I;Trujillo, JD;Meekins, DA;McDowell, C;Carossino, M;Bold, D;Kwon, T;Balaraman, V;Madden, DW;Artiaga, BL;Pogranichniy, RM;Sosa, GR;Henningson, J;Wilson, WC;Balasuriya, UBR;García-Sastre, A;Richt, JA;
PMID: 34426811 | DOI: 10.1101/2021.08.15.456341
SARS-CoV-2, a novel Betacoronavirus, was first reported circulating in human populations in December 2019 and has since become a global pandemic. Recent history involving SARS-like coronavirus outbreaks (SARS-CoV and MERS-CoV) have demonstrated the significant role of intermediate and reservoir hosts in viral maintenance and transmission cycles. Evidence of SARS-CoV-2 natural infection and experimental infections of a wide variety of animal species has been demonstrated, and in silico and in vitro studies have indicated that deer are susceptible to SARS-CoV-2 infection. White-tailed deer (Odocoileus virginianus) are amongst the most abundant, densely populated, and geographically widespread wild ruminant species in the United States. Human interaction with white-tailed deer has resulted in the occurrence of disease in human populations in the past. Recently, white-tailed deer fawns were shown to be susceptible to SARS-CoV-2. In the present study, we investigated the susceptibility and transmission of SARS-CoV-2 in adult white-tailed deer. In addition, we examined the competition of two SARS-CoV-2 isolates, representatives of the ancestral lineage A (SARS-CoV-2/human/USA/WA1/2020) and the alpha variant of concern (VOC) B.1.1.7 (SARS-CoV-2/human/USA/CA_CDC_5574/2020), through co-infection of white-tailed deer. Next-generation sequencing was used to determine the presence and transmission of each strain in the co-infected and contact sentinel animals. Our results demonstrate that adult white-tailed deer are highly susceptible to SARS-CoV-2 infection and can transmit the virus through direct contact as well as vertically from doe to fetus. Additionally, we determined that the alpha VOC B.1.1.7 isolate of SARS-CoV-2 outcompetes the ancestral lineage A isolate in white-tailed deer, as demonstrated by the genome of the virus shed from nasal and oral cavities from principal infected and contact animals, and from virus present in tissues of principal infected deer, fetuses and contact animals.
Winkler, ES;Chen, RE;Alam, F;Yildiz, S;Case, JB;Uccellini, MB;Holtzman, MJ;Garcia-Sastre, A;Schotsaert, M;Diamond, MS;
PMID: 34668780 | DOI: 10.1128/JVI.01511-21
The development of mouse models for COVID-19 has enabled testing of vaccines and therapeutics and defining aspects of SARS-CoV-2 pathogenesis. SARS-CoV-2 disease is severe in K18 transgenic mice (K18-hACE2-Tg) expressing human ACE2 (hACE2), the SARS-CoV-2 receptor, under an ectopic cytokeratin promoter, with high levels of infection measured in the lung and brain. Here, we evaluated SARS-CoV-2 infection in hACE2 KI mice that express hACE2 under an endogenous promoter in place of murine ACE2 (mACE2). Intranasal inoculation of hACE2 KI mice with SARS-CoV-2 WA1/2020 resulted in substantial viral replication within the upper and lower respiratory tracts with limited spread to extra-pulmonary organs. However, SARS-CoV-2-infected hACE2 KI mice did not lose weight and developed limited pathology. Moreover, no significant differences in viral burden were observed in hACE2 KI mice infected with B.1.1.7 or B.1.351 variants compared to WA1/2020 strain. Because the entry mechanisms of SARS-CoV-2 in mice remains uncertain, we evaluated the impact of the naturally-occurring, mouse-adapting N501Y mutation by comparing infection of hACE2 KI, K18-hACE2-Tg, ACE2-deficient, and wild-type C57BL/6 mice. The N501Y mutation minimally affected SARS-CoV-2 infection in hACE2 KI mice but was required for viral replication in wild-type C57BL/6 mice in a mACE2-dependent manner and augmented pathogenesis in the K18-hACE2 Tg mice. Thus, the N501Y mutation likely enhances interactions with mACE2 or hACE2 in vivo. Overall, our study highlights the hACE2 KI mice as a model of mild SARS-CoV-2 infection and disease and clarifies the requirement of the N501Y mutation in mice. IMPORTANCE Mouse models of SARS-CoV-2 pathogenesis have facilitated the rapid evaluation of countermeasures. While the first generation of models developed pneumonia and severe disease after SARS-CoV-2 infection, they relied on ectopic expression of supraphysiological levels of human ACE2 (hACE2). This has raised issues with their relevance to humans as the hACE2 receptor shows a more restricted expression pattern in the respiratory tract. Here we evaluated SARS-CoV-2 infection and disease with viruses containing or lacking a key mouse-adapting mutation in the spike gene in hACE2 KI mice, which express hACE2 under an endogenous promoter in place of murine ACE2. While infection of hACE2 KI mice with multiple strains of SARS-CoV-2 including variants of concern resulted in viral replication within the upper and lower respiratory tracts, the animals did not sustain severe lung injury. Thus, hACE2 KI mice serve as a model of mild infection with both ancestral and emerging SARS-CoV-2 variant strains.
The American journal of pathology
Ting, C;Aspal, M;Vaishampayan, N;Huang, SK;Riemondy, KA;Wang, F;Farver, C;Zemans, RL;
PMID: 34973949 | DOI: 10.1016/j.ajpath.2021.11.014
ARDS due to COVID-19 and other etiologies results from injury to the alveolar epithelial cell (AEC) barrier resulting in noncardiogenic pulmonary edema, which causes acute respiratory failure; clinical recovery requires epithelial regeneration. During physiologic regeneration in mice, AEC2s proliferate, exit the cell cycle, and transiently assume a transitional state before differentiating into AEC1s; persistence of the transitional state is associated with pulmonary fibrosis in humans. It is unknown whether transitional cells emerge and differentiate into AEC1s without fibrosis in human ARDS and why transitional cells differentiate into AEC1s during physiologic regeneration but persist in fibrosis. We hypothesized that incomplete but ongoing AEC1 differentiation from transitional cells without fibrosis may underlie persistent barrier permeability and fatal acute respiratory failure in ARDS. Immunostaining of postmortem ARDS lungs revealed abundant transitional cells in organized monolayers on alveolar septa without fibrosis. They were typically cuboidal or partially spread, sometimes flat, and occasionally expressed AEC1 markers. Immunostaining and/or interrogation of scRNAseq datasets revealed that transitional cells in mouse models of physiologic regeneration, ARDS, and fibrosis express markers of cell cycle exit but only in fibrosis express a specific senescence marker. Thus, in severe, fatal early ARDS, AEC1 differentiation from transitional cells is incomplete, underlying persistent barrier permeability and respiratory failure, but ongoing without fibrosis; senescence of transitional cells may be associated with pulmonary fibrosis.
Positive Retrospective SARS-CoV-2 Testing in a Case of Acute Respiratory Distress Syndrome of Unknown Etiology
Case reports in pulmonology
Burkett, A;McElwee, S;Margaroli, C;Bajpai, P;Elkholy, A;Manne, U;Wille, K;Benson, P;
PMID: 34513107 | DOI: 10.1155/2021/5484239
In order to elucidate the cause of acute respiratory distress syndrome of unknown etiology in a pre-pandemic patient, molecular techniques were used for detection of SARS-CoV-2. We used a SARS-CoV-2 nucleocapsid protein immunofluorescence stain to retrospectively identify an individual with diffuse alveolar damage on autopsy histology who had negative respiratory virus panel results in February, 2020, in Birmingham, Alabama. In situ hybridization for SARS-CoV-2 RNA revealed evidence of widespread multiorgan SARS-CoV-2 infection. This death antecedes the first reported death of a State of Alabama resident diagnosed with SARS-CoV-2 by 26 days.
McGonagle, D;Kearney, M;O'Regan, A;O'Donnell, J;Quartuccio, L;Watad, A;Bridgewood, C;
| DOI: 10.1016/S2665-9913(21)00322-2
In patients with moderate-to-severe COVID-19 pneumonia, an aberrant post-viral alveolitis with excessive inflammatory responses and immunothrombosis underpins use of immunomodulatory therapy (eg, corticosteroids and interleukin-6 receptor antagonism). By contrast, immunosuppression in individuals with mild COVID-19 who do not require oxygen therapy or in those with critical disease undergoing prolonged ventilation is of no proven benefit. Furthermore, a window of opportunity is thought to exist for timely immunosuppression in patients with moderate-to-severe COVID-19 pneumonia shortly after clinical presentation. In this Viewpoint, we explore the shortcomings of a universal immunosuppression approach in patients with moderate-to-severe COVID-19 due to disease heterogeneity related to ongoing SARS-CoV-2 replication, which can manifest as RNAaemia in some patients treated with immunotherapy. By contrast, immunomodulatory therapy has overall benefits in patients with rapid SARS-CoV-2 clearance, via blunting of multifaceted, excessive innate immune responses in the lungs, potentially uncontrolled T-cell responses, possible autoimmune responses, and immunothrombosis. We highlight this therapeutic dichotomy to better understand the immunopathology of moderate-to-severe COVID-19, particularly the role of RNAaemia, and to refine therapy choices.
SARS-CoV-2 Infects Endothelial Cells In Vivo and In Vitro
Frontiers in cellular and infection microbiology
Liu, F;Han, K;Blair, R;Kenst, K;Qin, Z;Upcin, B;Wörsdörfer, P;Midkiff, CC;Mudd, J;Belyaeva, E;Milligan, NS;Rorison, TD;Wagner, N;Bodem, J;Dölken, L;Aktas, BH;Vander Heide, RS;Yin, XM;Kolls, JK;Roy, CJ;Rappaport, J;Ergün, S;Qin, X;
PMID: 34307198 | DOI: 10.3389/fcimb.2021.701278
SARS-CoV-2 infection can cause fatal inflammatory lung pathology, including thrombosis and increased pulmonary vascular permeability leading to edema and hemorrhage. In addition to the lung, cytokine storm-induced inflammatory cascade also affects other organs. SARS-CoV-2 infection-related vascular inflammation is characterized by endotheliopathy in the lung and other organs. Whether SARS-CoV-2 causes endotheliopathy by directly infecting endothelial cells is not known and is the focus of the present study. We observed 1) the co-localization of SARS-CoV-2 with the endothelial cell marker CD31 in the lungs of SARS-CoV-2-infected mice expressing hACE2 in the lung by intranasal delivery of adenovirus 5-hACE2 (Ad5-hACE2 mice) and non-human primates at both the protein and RNA levels, and 2) SARS-CoV-2 proteins in endothelial cells by immunogold labeling and electron microscopic analysis. We also detected the co-localization of SARS-CoV-2 with CD31 in autopsied lung tissue obtained from patients who died from severe COVID-19. Comparative analysis of RNA sequencing data of the lungs of infected Ad5-hACE2 and Ad5-empty (control) mice revealed upregulated KRAS signaling pathway, a well-known pathway for cellular activation and dysfunction. Further, we showed that SARS-CoV-2 directly infects mature mouse aortic endothelial cells (AoECs) that were activated by performing an aortic sprouting assay prior to exposure to SARS-CoV-2. This was demonstrated by co-localization of SARS-CoV-2 and CD34 by immunostaining and detection of viral particles in electron microscopic studies. Moreover, the activated AoECs became positive for ACE-2 but not quiescent AoECs. Together, our results indicate that in addition to pneumocytes, SARS-CoV-2 also directly infects mature vascular endothelial cells in vivo and ex vivo, which may contribute to cardiovascular complications in SARS-CoV-2 infection, including multipleorgan failure.
Chiba, S;Kiso, M;Nakajima, N;Iida, S;Maemura, T;Kuroda, M;Sato, Y;Ito, M;Okuda, M;Yamada, S;Iwatsuki-Horimoto, K;Watanabe, T;Imai, M;Armbrust, T;Baric, RS;Halfmann, PJ;Suzuki, T;Kawaoka, Y;
PMID: 35100870 | DOI: 10.1128/mbio.03044-21
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide since December 2019, causing coronavirus disease 2019 (COVID-19). Although vaccines for this virus have been developed rapidly, repurposing drugs approved to treat other diseases remains an invaluable treatment strategy. Here, we evaluated the inhibitory effects of drugs on SARS-CoV-2 replication in a hamster infection model and in in vitro assays. Favipiravir significantly suppressed virus replication in hamster lungs. Remdesivir inhibited virus replication in vitro, but was not effective in the hamster model. However, GS-441524, a metabolite of remdesivir, effectively suppressed virus replication in hamsters. Co-administration of favipiravir and GS-441524 more efficiently reduced virus load in hamster lungs than did single administration of either drug for both the prophylactic and therapeutic regimens; prophylactic co-administration also efficiently inhibited lung inflammation in the infected animals. Furthermore, pretreatment of hamsters with favipiravir and GS-441524 effectively protected them from virus transmission via respiratory droplets upon exposure to infected hamsters. Repurposing and co-administration of antiviral drugs may help combat COVID-19. IMPORTANCE During a pandemic, repurposing drugs that are approved for other diseases is a quick and realistic treatment option. In this study, we found that co-administration of favipiravir and the remdesivir metabolite GS-441524 more effectively blocked SARS-CoV-2 replication in the lungs of Syrian hamsters than either favipiravir or GS-441524 alone as part of a prophylactic or therapeutic regimen. Prophylactic co-administration also reduced the severity of lung inflammation. Moreover, co-administration of these drugs to naive hamsters efficiently protected them from airborne transmission of the virus from infected animals. Since both drugs are nucleotide analogs that interfere with the RNA-dependent RNA polymerases of many RNA viruses, these findings may also help encourage co-administration of antivirals to combat future pandemics.
SARS-CoV-2, myocardial injury and inflammation: insights from a large clinical and autopsy study
Clinical research in cardiology : official journal of the German Cardiac Society
Dal Ferro, M;Bussani, R;Paldino, A;Nuzzi, V;Collesi, C;Zentilin, L;Schneider, E;Correa, R;Silvestri, F;Zacchigna, S;Giacca, M;Metra, M;Merlo, M;Sinagra, G;
PMID: 34282465 | DOI: 10.1007/s00392-021-01910-2
Despite growing evidence about myocardial injury in hospitalized COronaVIrus Disease 2019 (COVID-19) patients, the mechanism behind this injury is only poorly understood and little is known about its association with SARS-CoV-2-mediated myocarditis. Furthermore, definite evidence of the presence and role of SARS-CoV-2 in cardiomyocytes in the clinical scenario is still lacking.We histologically characterized myocardial tissue of 40 patients deceased with severe SARS-CoV-2 infection during the first wave of the pandemic. Clinical data were also recorded and analyzed. In case of findings supportive of myocardial inflammation, histological analysis was complemented by RT-PCR and immunohistochemistry for SARS-CoV-2 viral antigens and in situ RNA hybridization for the detection of viral genomes.Both chronic and acute myocardial damage was invariably present, correlating with the age and comorbidities of our population. Myocarditis of overt entity was found in one case (2.5%). SARS-CoV-2 genome was not found in the cardiomyocytes of the patient with myocarditis, while it was focally and negligibly present in cardiomyocytes of patients with known viral persistence in the lungs and no signs of myocardial inflammation. The presence of myocardial injury was not associated with myocardial inflammatory infiltrates.In this autopsy cohort of COVID-19 patients, myocarditis is rarely found and not associated with SARS-CoV-2 presence in cardiomyocytes. Chronic and acute forms of myocardial damage are constantly found and correlate with the severity of COVID-19 disease and pre-existing comorbidities.
A series of COVID-19 autopsies with clinical and pathologic comparisons to both seasonal and pandemic influenza
The journal of pathology. Clinical research
McMullen, P;Pytel, P;Snyder, A;Smith, H;Vickery, J;Brainer, J;Guzy, R;Wu, D;Schoettler, N;Adegunsoye, A;Sperling, A;Hart, J;Alpert, L;Chang, A;Gurbuxani, S;Krausz, T;Husain, AN;Mueller, J;
PMID: 33960723 | DOI: 10.1002/cjp2.220
Autopsies of patients who have died from COVID-19 have been crucial in delineating patterns of injury associated with SARS-CoV-2 infection. Despite their utility, comprehensive autopsy studies are somewhat lacking relative to the global burden of disease, and very few comprehensive studies contextualize the findings to other fatal viral infections. We developed a novel autopsy protocol in order to perform postmortem examinations on victims of COVID-19 and herein describe detailed clinical information, gross findings, and histologic features observed in the first 16 complete COVID-19 autopsies. We also critically evaluated the role of ancillary studies used to establish a diagnosis of COVID-19 at autopsy, including immunohistochemistry (IHC), in situ hybridization (ISH), and electron microscopy (EM). IHC and ISH targeting SARS-CoV-2 were comparable in terms of the location and number of infected cells in lung tissue; however, nonspecific staining of bacteria was seen occasionally with IHC. EM was unrevealing in blindly sampled tissues. We then compared the clinical and histologic features present in this series to six archival cases of fatal seasonal influenza and six archival cases of pandemic influenza from the fourth wave of the 'Spanish Flu' in the winter of 1920. In addition to routine histology, the inflammatory infiltrates in the lungs of COVID-19 and seasonal influenza victims were compared using quantitative IHC. Our results demonstrate that the clinical and histologic features of COVID-19 are similar to those seen in fatal cases of influenza, and the two diseases tend to overlap histologically. There was no significant difference in the composition of the inflammatory infiltrate in COVID-19 and influenza at sites of acute lung injury at the time of autopsy. Our study underscores the relatively nonspecific clinical features and pathologic changes shared between severe cases of COVID-19 and influenza, while also providing important caveats to ancillary methods of viral detection.
Antemortem vs Postmortem Histopathologic and Ultrastructural Findings in Paired Transbronchial Biopsy Specimens and Lung Autopsy Samples From Three Patients With Confirmed SARS-CoV-2
American journal of clinical pathology
Gagiannis, D;Umathum, VG;Bloch, W;Rother, C;Stahl, M;Witte, HM;Djudjaj, S;Boor, P;Steinestel, K;
PMID: 34463314 | DOI: 10.1093/ajcp/aqab087
Respiratory failure is the major cause of death in coronavirus disease 2019 (COVID-19). Autopsy-based reports describe diffuse alveolar damage (DAD), organizing pneumonia, and fibrotic change, but data on early pathologic changes and during progression of the disease are rare.We prospectively enrolled three patients with COVID-19 and performed full clinical evaluation, including high-resolution computed tomography. We took transbronchial biopsy (TBB) specimens at different time points and autopsy tissue samples for histopathologic and ultrastructural evaluation after the patients' death.Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was confirmed by reverse transcription polymerase chain reaction and/or fluorescence in situ hybridization in all TBBs. Lung histology showed reactive pneumocytes and capillary congestion in one patient who died shortly after hospital admission with detectable virus in one of two lung autopsy samples. SARS-CoV-2 was detected in two of two autopsy samples from another patient with a fulminant course and very short latency between biopsy and autopsy, showing widespread organizing DAD. In a third patient with a prolonged course, autopsy samples showed extensive fibrosis without detectable virus.We report the course of COVID-19 in paired biopsy specimens and autopsies, illustrating vascular, organizing, and fibrotic patterns of COVID-19-induced lung injury. Our results suggest an early spread of SARS-CoV-2 from the upper airways to the lung periphery with diminishing viral load during disease.
SARS-CoV-2 infection in the mouse olfactory system
Ye, Q;Zhou, J;He, Q;Li, RT;Yang, G;Zhang, Y;Wu, SJ;Chen, Q;Shi, JH;Zhang, RR;Zhu, HM;Qiu, HY;Zhang, T;Deng, YQ;Li, XF;Liu, JF;Xu, P;Yang, X;Qin, CF;
PMID: 34230457 | DOI: 10.1038/s41421-021-00290-1
SARS-CoV-2 infection causes a wide spectrum of clinical manifestations in humans, and olfactory dysfunction is one of the most predictive and common symptoms in COVID-19 patients. However, the underlying mechanism by which SARS-CoV-2 infection leads to olfactory disorders remains elusive. Herein, we demonstrate that intranasal inoculation with SARS-CoV-2 induces robust viral replication in the olfactory epithelium (OE), not the olfactory bulb (OB), resulting in transient olfactory dysfunction in humanized ACE2 (hACE2) mice. The sustentacular cells and Bowman's gland cells in the OE were identified as the major target cells of SARS-CoV-2 before invasion into olfactory sensory neurons (OSNs). Remarkably, SARS-CoV-2 infection triggers massive cell death and immune cell infiltration and directly impairs the uniformity of the OE structure. Combined transcriptomic and quantitative proteomic analyses revealed the induction of antiviral and inflammatory responses, as well as the downregulation of olfactory receptor (OR) genes in the OE from the infected animals. Overall, our mouse model recapitulates olfactory dysfunction in COVID-19 patients and provides critical clues for understanding the physiological basis for extrapulmonary manifestations of COVID-19.
Kawaoka, Y;Uraki, R;Kiso, M;Iida, S;Imai, M;Takashita, E;Kuroda, M;Halfmann, P;Loeber, S;Maemura, T;Yamayoshi, S;Fujisaki, S;Wang, Z;Ito, M;Ujie, M;Iwatsuki-Horimoto, K;Furusawa, Y;Wright, R;Chong, Z;Ozono, S;Yasuhara, A;Ueki, H;Sakai, Y;Li, R;Liu, Y;Larson, D;Koga, M;Tsutsumi, T;Adachi, E;Saito, M;Yamamoto, S;Matsubara, S;Hagihara, M;Mitamura, K;Sato, T;Hojo, M;Hattori, SI;Maeda, K;Okuda, M;Murakami, J;Duong, C;Godbole, S;Douek, D;Watanabe, S;Ohmagari, N;Yotsuyanagi, H;Diamond, M;Hasegawa, H;Mitsuya, H;Suzuki, T;
PMID: 35233565 | DOI: 10.21203/rs.3.rs-1375091/v1
The recent emergence of SARS-CoV-2 Omicron variants possessing large numbers of mutations has raised concerns of decreased effectiveness of current vaccines, therapeutic monoclonal antibodies, and antiviral drugs for COVID-19 against these variants1,2. While the original Omicron lineage, BA.1, has become dominant in many countries, BA.2 has been detected in at least 67 countries and has become dominant in the Philippines, India, and Denmark. Here, we evaluated the replicative ability and pathogenicity of an authentic infectious BA.2 isolate in immunocompetent and human ACE2 (hACE2)-expressing mice and hamsters. In contrast to recent data with chimeric, recombinant SARS-CoV-2 strains expressing the spike proteins of BA.1 and BA.2 on an ancestral WK-521 backbone3, we observed similar infectivity and pathogenicity in mice and hamsters between BA.2 and BA.1, and less pathogenicity compared to early SARS-CoV-2 strains. We also observed a marked and significant reduction in the neutralizing activity of plasma from COVID-19 convalescent individuals and vaccine recipients against BA.2 compared to ancestral and Delta variant strains. In addition, we found that some therapeutic monoclonal antibodies (REGN10987/REGN10933, COV2-2196/COV2-2130, and S309) and antiviral drugs (molnupiravir, nirmatrelvir, and S-217622) can restrict viral infection in the respiratory organs of hamsters infected with BA.2. These findings suggest that the replication and pathogenicity of BA.2 is comparable to that of BA.1 in rodents and that several therapeutic monoclonal antibodies and antiviral compounds are effective against Omicron/BA.2 variants.