Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

Your search for "INS" returned results. Search for our Top genes LGR5, vglut2, gad67, brca1

    Refine Probe List

    Content for comparison

    Gene

    • TBD (1413) Apply TBD filter
    • Lgr5 (151) Apply Lgr5 filter
    • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
    • Gad1 (90) Apply Gad1 filter
    • vGlut2 (80) Apply vGlut2 filter
    • HPV E6/E7 (78) Apply HPV E6/E7 filter
    • Slc17a6 (77) Apply Slc17a6 filter
    • Axin2 (74) Apply Axin2 filter
    • SLC32A1 (74) Apply SLC32A1 filter
    • FOS (73) Apply FOS filter
    • Sst (65) Apply Sst filter
    • TH (63) Apply TH filter
    • VGAT (58) Apply VGAT filter
    • Gad2 (54) Apply Gad2 filter
    • tdTomato (54) Apply tdTomato filter
    • DRD2 (53) Apply DRD2 filter
    • Slc17a7 (52) Apply Slc17a7 filter
    • GLI1 (51) Apply GLI1 filter
    • PVALB (47) Apply PVALB filter
    • egfp (46) Apply egfp filter
    • ZIKV (46) Apply ZIKV filter
    • DRD1 (42) Apply DRD1 filter
    • GFAP (39) Apply GFAP filter
    • COL1A1 (38) Apply COL1A1 filter
    • Crh (37) Apply Crh filter
    • Chat (37) Apply Chat filter
    • (-) Remove V-nCoV2019-S filter V-nCoV2019-S (37)
    • Pomc (34) Apply Pomc filter
    • PDGFRA (33) Apply PDGFRA filter
    • Il-6 (33) Apply Il-6 filter
    • Cre (33) Apply Cre filter
    • AGRP (32) Apply AGRP filter
    • PECAM1 (32) Apply PECAM1 filter
    • Npy (32) Apply Npy filter
    • Wnt5a (31) Apply Wnt5a filter
    • CXCL10 (31) Apply CXCL10 filter
    • GLP1R (31) Apply GLP1R filter
    • Sox9 (29) Apply Sox9 filter
    • CD68 (28) Apply CD68 filter
    • Penk (28) Apply Penk filter
    • PD-L1 (28) Apply PD-L1 filter
    • ACTA2 (27) Apply ACTA2 filter
    • SHH (27) Apply SHH filter
    • VGluT1 (27) Apply VGluT1 filter
    • OLFM4 (26) Apply OLFM4 filter
    • GFP (26) Apply GFP filter
    • Rbfox3 (25) Apply Rbfox3 filter
    • MALAT1 (24) Apply MALAT1 filter
    • SOX2 (24) Apply SOX2 filter
    • Ccl2 (24) Apply Ccl2 filter

    Product

    • RNAscope 2.5 HD Red assay (12) Apply RNAscope 2.5 HD Red assay filter
    • RNAscope 2.5 LS Assay (8) Apply RNAscope 2.5 LS Assay filter
    • RNAscope Multiplex Fluorescent Assay (6) Apply RNAscope Multiplex Fluorescent Assay filter
    • RNAscope 2.5 HD Brown Assay (4) Apply RNAscope 2.5 HD Brown Assay filter
    • RNAscope 2.5 HD Reagent Kit - BROWN (3) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
    • RNAscope 2.5 VS Assay (2) Apply RNAscope 2.5 VS Assay filter
    • RNAscope (1) Apply RNAscope filter

    Research area

    • Covid (32) Apply Covid filter
    • Infectious (32) Apply Infectious filter
    • Inflammation (7) Apply Inflammation filter
    • Covid-19 (1) Apply Covid-19 filter
    • Fibrosis (1) Apply Fibrosis filter
    • Reproduction (1) Apply Reproduction filter

    Category

    • Publications (39) Apply Publications filter
    The histologic and molecular correlates of liver disease in fatal COVID-19 including with alcohol use disorder

    Annals of diagnostic pathology

    2021 Dec 23

    Nuovo, GJ;Suster, D;Awad, H;Michaille, JJ;Tili, E;
    PMID: 34968863 | DOI: 10.1016/j.anndiagpath.2021.151881

    Hepatic disease is common in severe COVID-19. This study compared the histologic/molecular findings in the liver in fatal COVID-19 (n = 9) and age-matched normal controls (n = 9); three of the fatal COVID-19 livers had pre-existing alcohol use disorder (AUD). Controls showed a high resident population of sinusoidal macrophages that had variable ACE2 expression. Histologic findings in the cases included periportal/lobular inflammation. SARS-CoV2 RNA and nucleocapsid protein were detected in situ in 2/9 COVID-19 livers in low amounts. In 9/9 cases, there was ample in situ SARS-CoV-2 spike protein that co-localized with viral matrix and envelope proteins. The number of cells positive for spike/100× field was significantly greater in the AUD/COVID-19 cases (mean 5.9) versus the non-AUD/COVID-19 cases (mean 0.4, p < 0.001) which was corroborated by Western blots. ACE2+ cells were 10× greater in AUD/COVID-19 livers versus the other COVID-19/control liver samples (p < 0.001). Co-expression experiments showed that the spike protein localized to the ACE2 positive macrophages and, in the AUD cases, hepatic stellate cells that were activated as evidenced by IL6 and TNFα expression. Injection of the S1, but not S2, subunit of spike in mice induced hepatic lobular inflammation in activated macrophages. It is concluded that endocytosed viral spike protein can induce hepatitis in fatal COVID-19. This spike induced hepatitis is more robust in the livers with pre-existing AUD which may relate to why patients with alcohol abuse are at higher risk of severe liver disease with SARS-CoV2 infection.
    Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in a Dog in Connecticut in February 2021

    Viruses

    2021 Oct 23

    Lee, D;Helal, Z;Kim, J;Hunt, A;Barbieri, A;Tocco, N;Frasca, S;Kerr, K;Hyeon, J;Chung, D;Risatti, G;
    | DOI: 10.3390/v13112141

    We report the first detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in a 3-month-old dog in Connecticut that died suddenly and was submitted to the state veterinary diagnostic laboratory for postmortem examination. Viral RNA was detected in multiple organs of the dog by reverse transcription real time-PCR (RT-qPCR). Negative and positive sense strands of viral RNA were visualized by in situ hybridization using RNAscope technology. Complete genome sequencing and phylogenetic analysis of the hCoV-19/USA/CT-CVMDL-Dog-1/2021 (CT_Dog/2021) virus were conducted to identify the origin and lineage of the virus. The CT_Dog/2021 virus belonged to the GH/B1.2. genetic lineage and was genetically similar to SARS-CoV-2 identified in humans in the U.S. during the winter of 2020-2021. However, it was not related to other SARS-CoV-2 variants identified from companion animals in the U.S. It contained both the D614G in spike and P323L in nsp12 substitutions, which have become the dominant mutations in the United States. The continued sporadic detections of SARS-CoV-2 in companion animals warrant public health concerns about the zoonotic potential of SARS-CoV-2 and enhance our collective understanding of the epidemiology of the virus.
    Technical note on the exploration of COVID-19 in autopsy material

    Journal of clinical pathology

    2023 Jan 30

    Humphries, MP;Bingham, V;Abdullah Sidi, F;Craig, S;Lara, B;El-Daly, H;O'Doherty, N;Maxwell, P;Lewis, C;McQuaid, S;Lyness, J;James, J;Snead, DRJ;Salto-Tellez, M;
    PMID: 36717223 | DOI: 10.1136/jcp-2022-208525

    Interrogation of immune response in autopsy material from patients with SARS-CoV-2 is potentially significant. We aim to describe a validated protocol for the exploration of the molecular physiopathology of SARS-CoV-2 pulmonary disease using multiplex immunofluorescence (mIF).The application of validated assays for the detection of SARS-CoV-2 in tissues, originally developed in our laboratory in the context of oncology, was used to map the topography and complexity of the adaptive immune response at protein and mRNA levels.SARS-CoV-2 is detectable in situ by protein or mRNA, with a sensitivity that could be in part related to disease stage. In formalin-fixed, paraffin-embedded pneumonia material, multiplex immunofluorescent panels are robust, reliable and quantifiable and can detect topographic variations in inflammation related to pathological processes.Clinical autopsies have relevance in understanding diseases of unknown/complex pathophysiology. In particular, autopsy materials are suitable for the detection of SARS-CoV-2 and for the topographic description of the complex tissue-based immune response using mIF.
    Modeling SARS-CoV-2: Comparative Pathology in Rhesus Macaque and Golden Syrian Hamster Models

    Toxicologic pathology

    2022 Feb 05

    Choudhary, S;Kanevsky, I;Yildiz, S;Sellers, RS;Swanson, KA;Franks, T;Rathnasinghe, R;Munoz-Moreno, R;Jangra, S;Gonzalez, O;Meade, P;Coskran, T;Qian, J;Lanz, TA;Johnson, JG;Tierney, CA;Smith, JD;Tompkins, K;Illenberger, A;Corts, P;Ciolino, T;Dormitzer, PR;Dick, EJ;Shivanna, V;Hall-Ursone, S;Cole, J;Kaushal, D;Fontenot, JA;Martinez-Romero, C;McMahon, M;Krammer, F;Schotsaert, M;García-Sastre, A;
    PMID: 35128980 | DOI: 10.1177/01926233211072767

    Coronavirus disease 2019 (COVID-19) in humans has a wide range of presentations, ranging from asymptomatic or mild symptoms to severe illness. Suitable animal models mimicking varying degrees of clinical disease manifestations could expedite development of therapeutics and vaccines for COVID-19. Here we demonstrate that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection resulted in subclinical disease in rhesus macaques with mild pneumonia and clinical disease in Syrian hamsters with severe pneumonia. SARS-CoV-2 infection was confirmed by formalin-fixed, paraffin-embedded (FFPE) polymerase chain reaction (PCR), immunohistochemistry, or in situ hybridization. Replicating virus in the lungs was identified using in situ hybridization or virus plaque forming assays. Viral encephalitis, reported in some COVID-19 patients, was identified in one macaque and was confirmed with immunohistochemistry. There was no evidence of encephalitis in hamsters. Severity and distribution of lung inflammation were substantially more in hamsters compared with macaques and exhibited vascular changes and virus-induced cytopathic changes as seen in COVID-19 patients. Neither the hamster nor macaque models demonstrated evidence for multisystemic inflammatory syndrome (MIS). Data presented here demonstrate that macaques may be appropriate for mechanistic studies of mild asymptomatic COVID-19 pneumonia and COVID-19-associated encephalitis, whereas Syrian hamsters may be more suited to study severe COVID-19 pneumonia.
    Diffuse trophoblast damage is the hallmark of SARS-CoV-2-associated fetal demise

    Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc

    2021 May 18

    Garrido-Pontnou, M;Navarro, A;Camacho, J;Crispi, F;Alguacil-Guillén, M;Moreno-Baró, A;Hernandez-Losa, J;Sesé, M;Ramón Y Cajal, S;Garcia Ruíz, I;Serrano, B;Garcia-Aguilar, P;Suy, A;Ferreres, JC;Nadal, A;
    PMID: 34006935 | DOI: 10.1038/s41379-021-00827-5

    Placental pathology in SARS-CoV-2-infected pregnancies seems rather unspecific. However, the identification of the placental lesions due to SARS-CoV-2 infection would be a significant advance in order to improve the management of these pregnancies and to identify the mechanisms involved in a possible vertical transmission. The pathological findings in placentas delivered from 198 SARS-CoV-2-positive pregnant women were investigated for the presence of lesions associated with placental SARS-CoV-2 infection. SARS-CoV-2 infection was investigated in placental tissues through immunohistochemistry, and positive cases were further confirmed by in situ hybridization. SARS-CoV-2 infection was also investigated by RT-PCR in 33 cases, including all the immunohistochemically positive cases. Nine cases were SARS-CoV-2-positive by immunohistochemistry, in situ hybridization, and RT-PCR. These placentas showed lesions characterized by villous trophoblast necrosis with intervillous space collapse and variable amounts of mixed intervillous inflammatory infiltrate and perivillous fibrinoid deposition. Such lesions ranged from focal to massively widespread in five cases, resulting in intrauterine fetal death. Two of the stillborn fetuses showed some evidence of SARS-CoV-2 positivity. The remaining 189 placentas did not show similar lesions. The strong association between trophoblastic damage and placenta SARS-CoV-2 infection suggests that this lesion is a specific marker of SARS-CoV-2 infection in placenta. Diffuse trophoblastic damage, massively affecting chorionic villous tissue, can result in fetal death associated with COVID-19 disease.
    Glycated ACE2 receptor in diabetes: open door for SARS-COV-2 entry in cardiomyocyte

    Cardiovascular diabetology

    2021 May 07

    D'Onofrio, N;Scisciola, L;Sardu, C;Trotta, MC;De Feo, M;Maiello, C;Mascolo, P;De Micco, F;Turriziani, F;Municinò, E;Monetti, P;Lombardi, A;Napolitano, MG;Marino, FZ;Ronchi, A;Grimaldi, V;Hermenean, A;Rizzo, MR;Barbieri, M;Franco, R;Campobasso, CP;Napoli, C;Municinò, M;Paolisso, G;Balestrieri, ML;Marfella, R;
    PMID: 33962629 | DOI: 10.1186/s12933-021-01286-7

    About 50% of hospitalized coronavirus disease 2019 (COVID-19) patients with diabetes mellitus (DM) developed myocardial damage. The mechanisms of direct SARS-CoV-2 cardiomyocyte infection include viral invasion via ACE2-Spike glycoprotein-binding. In DM patients, the impact of glycation of ACE2 on cardiomyocyte invasion by SARS-CoV-2 can be of high importance. To evaluate the presence of SARS-CoV-2 in cardiomyocytes from heart autopsy of DM cases compared to Non-DM; to investigate the role of DM in SARS-COV-2 entry in cardiomyocytes. We evaluated consecutive autopsy cases, deceased for COVID-19, from Italy between Apr 30, 2020 and Jan 18, 2021. We evaluated SARS-CoV-2 in cardiomyocytes, expression of ACE2 (total and glycosylated form), and transmembrane protease serine protease-2 (TMPRSS2) protein. In order to study the role of diabetes on cardiomyocyte alterations, independently of COVID-19, we investigated ACE2, glycosylated ACE2, and TMPRSS2 proteins in cardiomyocytes from DM and Non-DM explanted-hearts. Finally, to investigate the effects of DM on ACE2 protein modification, an in vitro glycation study of recombinant human ACE2 (hACE2) was performed to evaluate the effects on binding to SARS-CoV-2 Spike protein. The authors included cardiac tissue from 97 autopsies. DM was diagnosed in 37 patients (38%). Fourth-seven out of 97 autopsies (48%) had SARS-CoV-2 RNA in cardiomyocytes. Thirty out of 37 DM autopsy cases (81%) and 17 out of 60 Non-DM autopsy cases (28%) had SARS-CoV-2 RNA in cardiomyocytes. Total ACE2, glycosylated ACE2, and TMPRSS2 protein expressions were higher in cardiomyocytes from autopsied and explanted hearts of DM than Non-DM. In vitro exposure of monomeric hACE2 to 120 mM glucose for 12 days led to non-enzymatic glycation of four lysine residues in the neck domain affecting the protein oligomerization. The upregulation of ACE2 expression (total and glycosylated forms) in DM cardiomyocytes, along with non-enzymatic glycation, could increase the susceptibility to COVID-19 infection in DM patients by favouring the cellular entry of SARS-CoV2.
    Cardiac SARS-CoV-2 infection is associated with pro-inflammatory transcriptomic alterations within the heart

    Cardiovascular research

    2021 Oct 14

    Bräuninger, H;Stoffers, B;Fitzek, ADE;Meißner, K;Aleshcheva, G;Schweizer, M;Weimann, J;Rotter, B;Warnke, S;Edler, C;Braun, F;Roedl, K;Scherschel, K;Escher, F;Kluge, S;Huber, TB;Ondruschka, B;Schultheiss, HP;Kirchhof, P;Blankenberg, S;Püschel, K;Westermann, D;Lindner, D;
    PMID: 34647998 | DOI: 10.1093/cvr/cvab322

    Cardiac involvement in COVID-19 is associated with adverse outcome. However, it is unclear whether cell specific consequences are associated with cardiac SARS-CoV-2 infection. Therefore, we investigated heart tissue utilizing in situ hybridization, immunohistochemistry and RNA-sequencing in consecutive autopsy cases to quantify virus load and characterize cardiac involvement in COVID-19.In this study, 95 SARS-CoV-2-positive autopsy cases were included. A relevant SARS-CoV-2 virus load in the cardiac tissue was detected in 41/95 deceased (43%). MACE-RNA-sequencing was performed to identify molecular pathomechanisms caused by the infection of the heart. A signature matrix was generated based on the single-cell dataset "Heart Cell Atlas" and used for digital cytometry on the MACE-RNA-sequencing data. Thus, immune cell fractions were estimated and revealed no difference in immune cell numbers in cases with and without cardiac infection. This result was confirmed by quantitative immunohistological diagnosis.MACE-RNA-sequencing revealed 19 differentially expressed genes (DEGs) with a q-value <0.05 (e.g. up: IFI44L, IFT3, TRIM25; down: NPPB, MB, MYPN). The upregulated DEGs were linked to interferon pathways and originate predominantly from endothelial cells. In contrast, the downregulated DEGs originate predominately from cardiomyocytes. Immunofluorescent staining showed viral protein in cells positive for the endothelial marker ICAM1 but rarely in cardiomyocytes. The GO term analysis revealed that downregulated GO terms were linked to cardiomyocyte structure, whereas upregulated GO terms were linked to anti-virus immune response.This study reveals, that cardiac infection induced transcriptomic alterations mainly linked to immune response and destruction of cardiomyocytes. While endothelial cells are primarily targeted by the virus, we suggest cardiomyocyte-destruction by paracrine effects. Increased pro-inflammatory gene expression was detected in SARS-CoV-2-infected cardiac tissue but no increased SARS-CoV-2 associated immune cell infiltration was observed.Cardiac injury can be documented in COVID-19, regardless the direct cardiac virus infection and is known to be associated with outcome. However, the direct virus infection of the myocardium leads to transcriptomic alterations and might therefore additionally contribute to pathophysiological processes in COVID-19. Therefore, consequences of cardiac virus infection need to be investigated in future studies, since they might also contribute to long-term effects in case of survival.
    Tissue factor upregulation is associated with SARS-CoV-2 in the lungs of COVID-19 patients

    Journal of thrombosis and haemostasis : JTH

    2021 Jul 08

    Subrahmanian, S;Borczuk, A;Salvatore, S;Fung, KM;Merrill, JT;Laurence, J;Ahamed, J;
    PMID: 34236752 | DOI: 10.1111/jth.15451

    A substantial proportion of patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) develop severe/critical coronavirus disease 2019 (COVID-19) characterized by acute respiratory distress syndrome (ARDS) with thrombosis.We tested the hypothesis that SARS-CoV-2--induced upregulation of tissue factor (TF) expression may be responsible for thrombus formation in COVID-19.We compared autopsy lung tissues from 11 patients with COVID-19--associated ARDS with samples from 6 patients with ARDS from other causes (non-COVID-19 ARDS) and 11 normal control lungs.Dual RNA in situ hybridization for SARS-CoV-2 and TF identified sporadic clustered SARS-CoV-2 with prominent co-localization of SARS-CoV-2 and TF RNA. TF expression was 2-fold higher in COVID-19 than in non-COVID-19 ARDS lungs (P = .017) and correlated with the intensity of SARS-CoV-2 staining (R2  = .36, P = .04). By immunofluorescence, TF protein expression was 2.1-fold higher in COVID-19 versus non-COVID-19 ARDS lungs (P = .0048) and 11-fold (P < .001) higher than control lungs. Fibrin thrombi and thrombi positive for platelet factor 4 (PF4) were found in close proximity to regions expressing TF in COVID-19 ARDS lung, and correlated with TF expression (fibrin, R2  = .52, P < .001; PF4, R2  = .59, P < .001).These data suggest that upregulation of TF expression is associated with thrombus formation in COVID-19 lungs and could be a key therapeutic target. Correlation of TF expression with SARS-CoV-2 in lungs of COVID-19 patients also raises the possibility of direct TF induction by the virus.
    SARS-CoV-2 crosses the blood-brain barrier accompanied with basement membrane disruption without tight junctions alteration

    Signal transduction and targeted therapy

    2021 Sep 06

    Zhang, L;Zhou, L;Bao, L;Liu, J;Zhu, H;Lv, Q;Liu, R;Chen, W;Tong, W;Wei, Q;Xu, Y;Deng, W;Gao, H;Xue, J;Song, Z;Yu, P;Han, Y;Zhang, Y;Sun, X;Yu, X;Qin, C;
    PMID: 34489403 | DOI: 10.1038/s41392-021-00719-9

    SARS-CoV-2 has been reported to show a capacity for invading the brains of humans and model animals. However, it remains unclear whether and how SARS-CoV-2 crosses the blood-brain barrier (BBB). Herein, SARS-CoV-2 RNA was occasionally detected in the vascular wall and perivascular space, as well as in brain microvascular endothelial cells (BMECs) in the infected K18-hACE2 transgenic mice. Moreover, the permeability of the infected vessel was increased. Furthermore, disintegrity of BBB was discovered in the infected hamsters by administration of Evans blue. Interestingly, the expression of claudin5, ZO-1, occludin and the ultrastructure of tight junctions (TJs) showed unchanged, whereas, the basement membrane was disrupted in the infected animals. Using an in vitro BBB model that comprises primary BMECs with astrocytes, SARS-CoV-2 was found to infect and cross through the BMECs. Consistent with in vivo experiments, the expression of MMP9 was increased and collagen IV was decreased while the markers for TJs were not altered in the SARS-CoV-2-infected BMECs. Besides, inflammatory responses including vasculitis, glial activation, and upregulated inflammatory factors occurred after SARS-CoV-2 infection. Overall, our results provide evidence supporting that SARS-CoV-2 can cross the BBB in a transcellular pathway accompanied with basement membrane disrupted without obvious alteration of TJs.
    Human Type II Taste Cells Express ACE2 and are Infected by SARS-CoV-2

    The American journal of pathology

    2021 Jun 05

    Doyle, ME;Appleton, A;Liu, QR;Yao, Q;Mazucanti, CH;Egan, JM;
    PMID: 34102107 | DOI: 10.1016/j.ajpath.2021.05.010

    Chemosensory changes are well-reported symptoms of SARS-CoV-2 infection. The virus targets cells for entry by binding of its spike protein to cell-surface angiotensin-converting enzyme- 2 (ACE2). It was not known whether ACE2 is expressed on taste receptor cells (TRCs) nor if TRCs are infected directly. Using an in-situ hybridization (ISH) probe and an antibody specific to ACE2, ACE2 is present on a subpopulation of TRCs, namely, Type II cells in taste buds in taste papillae. Fungiform papillae (FP) of a SARS-CoV-2+ patient exhibiting symptoms of COVID-19, including taste changes, were biopsied. Based on ISH, replicating SARS-CoV-2 was present in Type II cells. Therefore, taste Type II cells provide a potential portal for viral entry that predicts vulnerabilities to SARS-CoV-2 in the oral cavity. The continuity and cell turnover of the patient's FP taste stem cell layer were disrupted during infection and had not completely recovered 6 weeks post symptom onset. Another patient suffering post-COVID-19 taste disturbances also had disrupted stem cells. These results demonstrate the possibility that novel and sudden taste changes frequently reported in COVID-19 may be the result of direct infection of taste papillae by SARS-CoV-2. This may result in impaired taste receptor stem cell activity and suggest more work is needed to understand the acute and post-acute dynamics of viral kinetics in the human taste bud.
    RNAscope in situ hybridization and RT-PCR for detection of SARS-CoV-2 in chilblain-like lesions: A clinical, laboratory and histopathological study

    Pediatric dermatology

    2022 Jan 01

    Robustelli Test, E;Sena, P;Locatelli, AG;Carugno, A;di Mercurio, M;Moggio, E;Gambini, DM;Arosio, MEG;Callegaro, A;Morotti, D;Gianatti, A;Vezzoli, P;
    PMID: 34989043 | DOI: 10.1111/pde.14903

    Since the beginning of the coronavirus disease 2019 (COVID-19) pandemic, an increasing number of chilblain-like lesions (ChLL) have been increasingly reported worldwide. To date, the causal link between ChLL and SARS-CoV-2 infection has not been unequivocally established.In this case series, we present demographic, clinical, laboratory, and histopathological information regarding 27 young patients with a clinical diagnosis of ChLL who referred to the Dermatology Unit of Papa Giovanni XXIII Hospital, Bergamo, Italy, from 1 April 2020 to 1 June 2020.The mean age was 14.2 years, and 21 patients (78%) experienced mild systemic symptoms a median of 28 days before the onset of cutaneous lesions. ChLL mostly involved the feet (20 patients - 74%). Among acral lesions, we identified three different clinical patterns: (i) chilblains in 20 patients (74%); (ii) fixed erythematous macules in 4 children (15%); (iii) erythrocyanosis in 3 female patients (11%). Blood examinations and viral serologies, including parvovirus B19, cytomegalovirus (CMV), Epstein-Barr virus (EBV), and coxsackievirus were normal in all. Three patients (11%) underwent nasopharyngeal swab for RT-PCR for SARS-CoV-2 showing only 1 positive. Histopathological examinations of 7 skin biopsies confirmed the clinical diagnosis of chilblains; vessel thrombi were observed only in 1 case. Our findings failed to demonstrate the direct presence of SARS-CoV-2 RNA in skin biopsies, both with real-time polymerase chain reaction (RT-PCR) and RNAscope in situ hybridization (ISH).Limited number of cases, unavailability of laboratory confirmation of COVID-19 in all patients, potential methodological weakness, and latency of skin biopsies in comparison to cutaneous lesions onset.These observations may support the hypothesis of an inflammatory pathogenesis rather than the presence of peripheral viral particles. Although, we could not exclude an early phase of viral endothelial damage followed by an IFN-I or complement-mediated inflammatory phase. Further observations on a large number of patients are needed to confirm this hypothesis.
    Viral mapping in COVID-19 deceased in the Augsburg autopsy series of the first wave: A multiorgan and multimethodological approach

    PloS one

    2021 Jul 19

    Hirschbühl, K;Dintner, S;Beer, M;Wylezich, C;Schlegel, J;Delbridge, C;Borcherding, L;Lippert, J;Schiele, S;Müller, G;Moiraki, D;Spring, O;Wittmann, M;Kling, E;Braun, G;Kröncke, T;Claus, R;Märkl, B;Schaller, T;
    PMID: 34280238 | DOI: 10.1371/journal.pone.0254872

    COVID-19 is only partly understood, and the level of evidence available in terms of pathophysiology, epidemiology, therapy, and long-term outcome remains limited. During the early phase of the pandemic, it was necessary to effectively investigate all aspects of this new disease. Autopsy can be a valuable procedure to investigate the internal organs with special techniques to obtain information on the disease, especially the distribution and type of organ involvement.During the first wave of COVID-19 in Germany, autopsies of 19 deceased patients were performed. Besides gross examination, the organs were analyzed with standard histology and polymerase-chain-reaction for SARS-CoV-2. Polymerase chain reaction positive localizations were further analyzed with immunohistochemistry and RNA-in situ hybridization for SARS-CoV-2.Eighteen of 19 patients were found to have died due to COVID-19. Clinically relevant histological changes were only observed in the lungs. Diffuse alveolar damage in considerably different degrees was noted in 18 cases. Other organs, including the central nervous system, did not show specific micromorphological alterations. In terms of SARS-CoV-2 detection, the focus remains on the upper airways and lungs. This is true for both the number of positive samples and the viral load. A highly significant inverse correlation between the stage of diffuse alveolar damage and viral load was found on a case and a sample basis. Mediastinal lymph nodes and fat were also affected by the virus at high frequencies. By contrast, other organs rarely exhibited a viral infection. Moderate to strong correlations between the methods for detecting SARS-CoV-2 were observed for the lungs and for other organs.The lung is the most affected organ in gross examination, histology and polymerase chain reaction. SARS-CoV-2 detection in other organs did not reveal relevant or specific histological changes. Moreover, we did not find CNS involvement.

    Pages

    • 1
    • 2
    • 3
    • 4
    • next ›
    • last »
    X
    Description
    sense
    Example: Hs-LAG3-sense
    Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
    Intron#
    Example: Mm-Htt-intron2
    Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
    Pool/Pan
    Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
    A mixture of multiple probe sets targeting multiple genes or transcripts
    No-XSp
    Example: Hs-PDGFB-No-XMm
    Does not cross detect with the species (Sp)
    XSp
    Example: Rn-Pde9a-XMm
    designed to cross detect with the species (Sp)
    O#
    Example: Mm-Islr-O1
    Alternative design targeting different regions of the same transcript or isoforms
    CDS
    Example: Hs-SLC31A-CDS
    Probe targets the protein-coding sequence only
    EnEmProbe targets exons n and m
    En-EmProbe targets region from exon n to exon m
    Retired Nomenclature
    tvn
    Example: Hs-LEPR-tv1
    Designed to target transcript variant n
    ORF
    Example: Hs-ACVRL1-ORF
    Probe targets open reading frame
    UTR
    Example: Hs-HTT-UTR-C3
    Probe targets the untranslated region (non-protein-coding region) only
    5UTR
    Example: Hs-GNRHR-5UTR
    Probe targets the 5' untranslated region only
    3UTR
    Example: Rn-Npy1r-3UTR
    Probe targets the 3' untranslated region only
    Pan
    Example: Pool
    A mixture of multiple probe sets targeting multiple genes or transcripts

    Enabling research, drug development (CDx) and diagnostics

    Contact Us
    • Toll-free in the US and Canada
    • +1877 576-3636
    • 
    • 
    • 
    Company
    • Overview
    • Leadership
    • Careers
    • Distributors
    • Quality
    • News & Events
    • Webinars
    • Patents
    Products
    • RNAscope or BaseScope
    • Target Probes
    • Controls
    • Manual assays
    • Automated Assays
    • Accessories
    • Software
    • How to Order
    Research
    • Popular Applications
    • Cancer
    • Viral
    • Pathways
    • Neuroscience
    • Other Applications
    • RNA & Protein
    • Customer Innovations
    • Animal Models
    Technology
    • Overview
    • RNA Detection
    • Spotlight Interviews
    • Publications & Guides
    Assay Services
    • Our Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    • Your Benefits
    • How to Order
    Diagnostics
    • Diagnostics
    • Companion Diagnostics
    Support
    • Getting started
    • Contact Support
    • Troubleshooting Guide
    • FAQs
    • Manuals, SDS & Inserts
    • Downloads
    • Webinars
    • Training Videos

    Visit Bio-Techne and its other brands

    • bio-technie
    • protein
    • bio-spacific
    • rd
    • novus
    • tocris
    © 2025 Advanced Cell Diagnostics, Inc.
    • Terms and Conditions of Sale
    • Privacy Policy
    • Security
    • Email Preferences
    • 
    • 
    • 

    For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

     

    Contact Us / Request a Quote
    Download Manuals
    Request a PAS Project Consultation
    Order online at
    bio-techne.com
    OK
    X
    Contact Us

    Complete one of the three forms below and we will get back to you.

    For Quote Requests, please provide more details in the Contact Sales form below

    • Contact Sales
    • Contact Support
    • Contact Services
    • Offices

    Advanced Cell Diagnostics

    Our new headquarters office starting May 2016:

    7707 Gateway Blvd.  
    Newark, CA 94560
    Toll Free: 1 (877) 576-3636
    Phone: (510) 576-8800
    Fax: (510) 576-8798

     

    Bio-Techne

    19 Barton Lane  
    Abingdon Science Park
    Abingdon
    OX14 3NB
    United Kingdom
    Phone 2: +44 1235 529449
    Fax: +44 1235 533420

     

    Advanced Cell Diagnostics China

    20F, Tower 3,
    Raffles City Changning Office,
    1193 Changning Road, Shanghai 200051

    021-52293200
    info.cn@bio-techne.com
    Web: www.acdbio.com/cn

    For general information: Info.ACD@bio-techne.com
    For place an order: order.ACD@bio-techne.com
    For product support: support.ACD@bio-techne.com
    For career opportunities: hr.ACD@bio-techne.com

    See Distributors
    ×

    You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

    OK Cancel
    Need help?

    How can we help you?