Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (37)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • (-) Remove MALAT1 filter MALAT1 (24)
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope (9) Apply RNAscope filter
  • RNAscope 2.5 HD Brown Assay (6) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 HD Red assay (6) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.0 Assay (4) Apply RNAscope 2.0 Assay filter
  • RNAscope Fluorescent Multiplex Assay (3) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope Multiplex Fluorescent Assay (3) Apply RNAscope Multiplex Fluorescent Assay filter
  • BASEscope Assay RED (1) Apply BASEscope Assay RED filter
  • RNAscope 2.5 LS Assay (1) Apply RNAscope 2.5 LS Assay filter

Research area

  • Covid (13) Apply Covid filter
  • Cancer (12) Apply Cancer filter
  • lncRNA (9) Apply lncRNA filter
  • Neuroscience (5) Apply Neuroscience filter
  • LncRNAs (3) Apply LncRNAs filter
  • Alzheimer's Disease (1) Apply Alzheimer's Disease filter
  • Development (1) Apply Development filter
  • Diabetic Kidney Disease (1) Apply Diabetic Kidney Disease filter
  • Heart (1) Apply Heart filter
  • Immunology (1) Apply Immunology filter
  • Immunotherapy (1) Apply Immunotherapy filter
  • Lung fibrosis (1) Apply Lung fibrosis filter
  • Neuroinflammation (1) Apply Neuroinflammation filter
  • Other: Heart (1) Apply Other: Heart filter
  • Other:: Eyes (1) Apply Other:: Eyes filter
  • Stem cell (1) Apply Stem cell filter
  • Thyroid (1) Apply Thyroid filter
  • TNAs (1) Apply TNAs filter
  • Vaccine (1) Apply Vaccine filter
  • Vaccines (1) Apply Vaccines filter

Category

  • Publications (37) Apply Publications filter
Cholesterol-functionalized DNA/RNA heteroduplexes cross the blood-brain barrier and knock down genes in the rodent CNS

Nature biotechnology

2021 Aug 12

Nagata, T;Dwyer, CA;Yoshida-Tanaka, K;Ihara, K;Ohyagi, M;Kaburagi, H;Miyata, H;Ebihara, S;Yoshioka, K;Ishii, T;Miyata, K;Miyata, K;Powers, B;Igari, T;Yamamoto, S;Arimura, N;Hirabayashi, H;Uchihara, T;Hara, RI;Wada, T;Bennett, CF;Seth, PP;Rigo, F;Yokota, T;
PMID: 34385691 | DOI: 10.1038/s41587-021-00972-x

Achieving regulation of endogenous gene expression in the central nervous system (CNS) with antisense oligonucleotides (ASOs) administered systemically would facilitate the development of ASO-based therapies for neurological diseases. We demonstrate that DNA/RNA heteroduplex oligonucleotides (HDOs) conjugated to cholesterol or α-tocopherol at the 5' end of the RNA strand reach the CNS after subcutaneous or intravenous administration in mice and rats. The HDOs distribute throughout the brain, spinal cord and peripheral tissues and suppress the expression of four target genes by up to 90% in the CNS, whereas single-stranded ASOs conjugated to cholesterol have limited activity. Gene knockdown was observed in major CNS cell types and was greatest in neurons and microglial cells. Side effects, such as thrombocytopenia and focal brain necrosis, were limited by using subcutaneous delivery or by dividing intravenous injections. By crossing the blood-brain barrier more effectively, cholesterol-conjugated HDOs may overcome the limited efficacy of ASOs targeting the CNS without requiring intrathecal administration.
Nuclear Localization of Huntingtin mRNA Is Specific to Cells of Neuronal Origin.

Cell Rep.

2018 Sep 04

Didiot MC, Ferguson CM, Ly S, Coles AH, Smith AO, Bicknell AA, Hall LM, Sapp E, Echeverria D, Pai AA, DiFiglia M, Moore MJ, Hayward LJ, Aronin N, Khvorova A.
PMID: 30184490 | DOI: 10.1016/j.celrep.2018.07.106

Huntington's disease (HD) is a monogenic neurodegenerative disorder representing an ideal candidate for gene silencing with oligonucleotide therapeutics (i.e., antisense oligonucleotides [ASOs] and small interfering RNAs [siRNAs]). Using an ultra-sensitive branched fluorescence in situ hybridization (FISH) method, we show that ∼50% of wild-type HTT mRNA localizes to the nucleus and that its nuclear localization is observed only in neuronal cells. In mouse brain sections, we detect Htt mRNA predominantly in neurons, with a wide range of Htt foci observed per cell. We further show that siRNAs and ASOs efficiently eliminate cytoplasmic HTT mRNA and HTT protein, but only ASOs induce a partial but significant reduction of nuclear HTT mRNA. We speculate that, like other mRNAs, HTT mRNA subcellular localization might play a role in important neuronal regulatory mechanisms.

Targeted delivery of antisense oligonucleotides to pancreatic β-cells.

Sci Adv. 2018 Oct 17;4(10):eaat3386.

2018 Oct 17

Ämmälä C, Drury WJ 3rd, Knerr L, Ahlstedt I, Stillemark-Billton P, Wennberg-Huldt C, Andersson EM, Valeur E, Jansson-Löfmark R, Janzén D, Sundström L, Meuller J, Claesson J, Andersson P, Johansson C, Lee RG, Prakash TP, Seth PP, Monia BP, Andersson S.
PMID: 30345352 | DOI: 10.1126/sciadv.aat3386

Antisense oligonucleotide (ASO) silencing of the expression of disease-associated genes is an attractive novel therapeutic approach, but treatments are limited by the ability to deliver ASOs to cells and tissues. Following systemic administration, ASOs preferentially accumulate in liver and kidney. Among the cell types refractory to ASO uptake is the pancreatic insulin-secreting β-cell. Here, we show that conjugation of ASOs to a ligand of the glucagon-like peptide-1 receptor (GLP1R) can productively deliver ASO cargo to pancreatic β-cells both in vitro and in vivo. Ligand-conjugated ASOs silenced target genes in pancreatic islets at doses that did not affect target gene expression in liver or other tissues, indicating enhanced tissue and cell type specificity. This finding has potential to broaden the use of ASO technology, opening up novel therapeutic opportunities, and presents an innovative approach for targeted delivery of ASOs to additional cell types.
Syrian hamster convalescence from prototype SARS-CoV-2 confers measurable protection against the attenuated disease caused by the Omicron variant

PLoS pathogens

2023 Apr 01

Ryan, KA;Bewley, KR;Watson, RJ;Burton, C;Carnell, O;Cavell, BE;Challis, A;Coombes, NS;Davies, ER;Edun-Huges, J;Emery, K;Fell, R;Fotheringham, SA;Gooch, KE;Gowan, K;Handley, A;Harris, DJ;Hesp, R;Hunter, L;Humphreys, R;Johnson, R;Kennard, C;Knott, D;Lister, S;Morley, D;Ngabo, D;Osman, KL;Paterson, J;Penn, EJ;Pullan, ST;Richards, KS;Summers, S;Thomas, SR;Weldon, T;Wiblin, NR;Rayner, EL;Vipond, RT;Hallis, B;Salguero, FJ;Funnell, SGP;Hall, Y;
PMID: 37014911 | DOI: 10.1371/journal.ppat.1011293

The mutation profile of the SARS-CoV-2 Omicron (lineage BA.1) variant posed a concern for naturally acquired and vaccine-induced immunity. We investigated the ability of prior infection with an early SARS-CoV-2 ancestral isolate (Australia/VIC01/2020, VIC01) to protect against disease caused by BA.1. We established that BA.1 infection in naïve Syrian hamsters resulted in a less severe disease than a comparable dose of the ancestral virus, with fewer clinical signs including less weight loss. We present data to show that these clinical observations were almost absent in convalescent hamsters challenged with the same dose of BA.1 50 days after an initial infection with ancestral virus. These data provide evidence that convalescent immunity against ancestral SARS-CoV-2 is protective against BA.1 in the Syrian hamster model of infection. Comparison with published pre-clinical and clinical data supports consistency of the model and its predictive value for the outcome in humans. Further, the ability to detect protection against the less severe disease caused by BA.1 demonstrates continued value of the Syrian hamster model for evaluation of BA.1-specific countermeasures.
MALAT1 modulates alternative splicing by cooperating with the splicing factors PTBP1 and PSF

Science advances

2022 Dec 23

Miao, H;Wu, F;Li, Y;Qin, C;Zhao, Y;Xie, M;Dai, H;Yao, H;Cai, H;Wang, Q;Song, X;Li, L;
PMID: 36563164 | DOI: 10.1126/sciadv.abq7289

Understanding how long noncoding RNAs (lncRNAs) cooperate with splicing factors (SFs) in alternative splicing (AS) control is fundamental to human biology and disease. We show that metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), a well-documented AS-implicated lncRNA, regulates AS via two SFs, polypyrimidine tract-binding protein 1 (PTBP1) and PTB-associated SF (PSF). MALAT1 stabilizes the interaction between PTBP1 and PSF, thereby forming a functional module that affects a network of AS events. The MALAT1-stabilized PTBP1/PSF interaction occurs in multiple cellular contexts; however, the functional module, relative to MALAT1 only, has more dominant pathological significance in hepatocellular carcinoma. MALAT1 also stabilizes the PSF interaction with several heterogeneous nuclear ribonucleoparticle proteins other than PTBP1, hinting a broad role in AS control. We present a model in which MALAT1 cooperates with distinct SFs for AS regulation and pose that, relative to analyses exclusively performed for lncRNAs, a comprehensive consideration of lncRNAs and their binding partners may provide more information about their biological functions.
Parathyroid Neoplasms: Immunohistochemical Characterization and Long Noncoding RNA (lncRNA) Expression.

Endocr Pathol. 2019

2019 May 22

Yu Q, Hardin H, Chu YH, Rehrauer W, Lloyd RV.
PMID: 31119524 | DOI: 10.1007/s12022-019-9578-3

Parathyroid adenomas are slow growing benign neoplasms associated with hypercalcemia, while atypical parathyroid adenomas and parathyroid carcinomas are uncommon tumors and their histologic features may overlap with parathyroid adenomas. LncRNAs participate in transcription and in epigenetic or post-transcriptional regulation of gene expression, and probably contribute to carcinogenesis. We analyzed a group of normal, hyperplastic, and neoplastic parathyroid lesions to determine the best immunohistochemical markers to characterize these lesions and to determine the role of selected lncRNAs in tumor progression. A tissue microarray consisting of 111 cases of normal parathyroid (n = 14), primary hyperplasia (n = 15), secondary hyperplasia (n = 10), tertiary hyperplasia (n = 11), adenomas (n = 50), atypical adenomas (n = 7), and carcinomas (n = 4) was used. Immunohistochemical staining with antibodies against chromogranin A, synaptophysin, parathyroid hormone, and insulinoma-associated protein 1(INSM1) was used. Expression of lncRNAs including metastasis-associated lung adenocarcinoma transcript one (MALAT1), HOX transcript antisense intergenic RNA (HOTAIR), and long intergenic non-protein coding regulator of reprograming (Linc-ROR or ROR) was also analyzed by in situ hybridization and RT-PCR. All of the parathyroid tissues were positive for parathyroid hormone, while most cases were positive for chromogranin A (98%). Synaptophysin was expressed in only 12 cases (11%) and INMS1 was negative in all cases. ROR was significantly downregulated during progression from normal, hyperplastic, and adenomatous parathyroid to parathyroid carcinomas. These results show that parathyroid hormone and chromogranin A are useful markers for parathyroid neoplasms, while synaptophysin and INSM1 are not very sensitive broad-spectrum markers for these neoplasms. LincRNA ROR may function as a tumor suppressor during parathyroid tumor progression.

SARS-CoV-2 Disease Severity in the Golden Syrian Hamster Model of Infection is Related to the Volume of Intranasal Inoculum.

preprints

2023 Feb 10

Handley, A;Ryan, K;Davies, E;Bewley, K;Carnell, O;Challis, A;Coombes, N;Fotheringham, S;Gooch, K;Charlton, M;Harris, D;Kennard, C;Ngabo, D;Weldon, T;Salguero, F;Funnell, S;Hall, Y;
| DOI: 10.20944/preprints202302.0171.v1

The Golden Syrian hamster (Mesocricetus auratus) is now commonly used in preclinical research for the study of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the assessment of vaccines, drugs and therapeutics. Here we show that hamsters inoculated via the intranasal route with the same infectious virus dose of prototypical SARS-CoV-2 administered in a different volume present with different clinical signs, weight loss and viral shedding, with a reduced volume resulting in reduced severity of disease similar to that obtained by a 500-fold reduction in challenge dose. The tissue burden of virus and the severity of pulmonary pathology were also significantly affected by different challenge inoculum volumes. These findings suggest that direct comparison between the severity of SARS-CoV-2 variants or studies assessing the efficacy of treatments determined by hamster studies cannot be made unless both the challenge dose and inoculation volume are matched when using the intranasal route. Additionally, analysis of sub-genomic and total genomic RNA PCR data demonstrated no link between sub-genomic and live viral titres and that sub-genomic analyses do not provide any information beyond that provided by more sensitive total genomic PCR.
Systematic mapping of nuclear domain-associated transcripts reveals speckles and lamina as hubs of functionally distinct retained introns

Molecular cell

2022 Feb 09

Barutcu, AR;Wu, M;Braunschweig, U;Dyakov, BJA;Luo, Z;Turner, KM;Durbic, T;Lin, ZY;Weatheritt, RJ;Maass, PG;Gingras, AC;Blencowe, BJ;
PMID: 35182477 | DOI: 10.1016/j.molcel.2021.12.010

The nucleus is highly compartmentalized through the formation of distinct classes of membraneless domains. However, the composition and function of many of these structures are not well understood. Using APEX2-mediated proximity labeling and RNA sequencing, we surveyed human transcripts associated with nuclear speckles, several additional domains, and the lamina. Remarkably, speckles and lamina are associated with distinct classes of retained introns enriched in genes that function in RNA processing, translation, and the cell cycle, among other processes. In contrast to the lamina-proximal introns, retained introns associated with speckles are relatively short, GC-rich, and enriched for functional sites of RNA-binding proteins that are concentrated in these domains. They are also highly differentially regulated across diverse cellular contexts, including the cell cycle. Thus, our study provides a resource of nuclear domain-associated transcripts and further reveals speckles and lamina as hubs of distinct populations of retained introns linked to gene regulation and cell cycle progression.
Pathological Features and Neuroinflammatory Mechanisms of SARS-CoV-2 in the Brain and Potential Therapeutic Approaches

Biomolecules

2022 Jul 11

Sodagar, A;Javed, R;Tahir, H;Razak, SIA;Shakir, M;Naeem, M;Yusof, AHA;Sagadevan, S;Hazafa, A;Uddin, J;Khan, A;Al-Harrasi, A;
PMID: 35883527 | DOI: 10.3390/biom12070971

The number of deaths has been increased due to COVID-19 infections and uncertain neurological complications associated with the central nervous system. Post-infections and neurological manifestations in neuronal tissues caused by COVID-19 are still unknown and there is a need to explore how brainstorming promoted congenital impairment, dementia, and Alzheimer's disease. SARS-CoV-2 neuro-invasion studies in vivo are still rare, despite the fact that other beta-coronaviruses have shown similar properties. Neural (olfactory or vagal) and hematogenous (crossing the blood-brain barrier) pathways have been hypothesized in light of new evidence showing the existence of SARS-CoV-2 host cell entry receptors into the specific components of human nerve and vascular tissue. Spike proteins are the primary key and structural component of the COVID-19 that promotes the infection into brain cells. Neurological manifestations and serious neurodegeneration occur through the binding of spike proteins to ACE2 receptor. The emerging evidence reported that, due to the high rate in the immediate wake of viral infection, the olfactory bulb, thalamus, and brain stem are intensely infected through a trans-synaptic transfer of the virus. It also instructs the release of chemokines, cytokines, and inflammatory signals immensely to the blood-brain barrier and infects the astrocytes, which causes neuroinflammation and neuron death; and this induction of excessive inflammation and immune response developed in more neurodegeneration complications. The present review revealed the pathophysiological effects, molecular, and cellular mechanisms of possible entry routes into the brain, pathogenicity of autoantibodies and emerging immunotherapies against COVID-19.
OVX033, a nucleocapsid-based vaccine candidate, provides broad-spectrum protection against SARS-CoV-2 variants in a hamster challenge model

Frontiers in Immunology

2023 Jun 19

Primard, C;Monchâtre-Leroy, E;Del Campo, J;Valsesia, S;Nikly, E;Chevandier, M;Boué, F;Servat, A;Wasniewski, M;Picard-Meyer, E;Courant, T;Collin, N;Salguero, F;Le Vert, A;Guyon-Gellin, D;Nicolas, F;
| DOI: 10.3389/fimmu.2023.1188605

Spike-based COVID-19 vaccines induce potent neutralizing antibodies but their efficacy against SARS-CoV-2 variants decreases. OVX033 is a recombinant protein composed of the full-length nucleocapsid (N) protein of SARS-CoV-2 genetically fused to oligoDOM , a self-assembling domain which improves antigen immunogenicity. OVX033 including N as an antigenic target is proposed as new vaccine candidate providing broad-spectrum protection against sarbecoviruses. OVX033 demonstrated its ability to trigger cross-reactive T cell responses and cross-protection against three variants of SARS-CoV-2 (B.1 Europe, Delta B.1.617.2, and Omicron B.1.1.529) in a hamster challenge model, as evidenced by lower weight loss, lower lung viral loads, and reduced lung histopathological lesions.
Coronary Stent Abscess in the Setting of Arteriovenous Graft Infection following COVID-19: An Autopsy Case Report

Case reports in pathology

2023 May 03

Butler, JT;Chellappan, R;Litovsky, S;Leal, SM;Benson, PV;
PMID: 37180570 | DOI: 10.1155/2023/9998749

While rare, coronary stent infections present with significant mortality-with most infections and further complications occurring within months of percutaneous coronary intervention (PCI). Here, we discuss a post-COVID-19 patient who presented approximately one year after PCI for declotting of an arteriovenous graft (AVG). Upon admission, the patient was found to be bacteremic with multilobar pneumonia and an infection of the AVG. Empiric antibiotics were started, and blood cultures were subsequently positive for MRSA. Removal of the AVG was unsuccessful, and two days after admission, the patient passed. Autopsy revealed a perivascular abscess in the RCA near the origin of the stent with a ground section of the RCA with stent revealing abundant calcific atherosclerosis and marked necrosis of the artery wall. The cause of death was determined to be sepsis complicating coronary artery disease and chronic renal failure.
An inhaled bioadhesive hydrogel to shield non-human primates from SARS-CoV-2 infection

Nature materials

2023 Feb 09

Mei, X;Li, J;Wang, Z;Zhu, D;Huang, K;Hu, S;Popowski, KD;Cheng, K;
PMID: 36759564 | DOI: 10.1038/s41563-023-01475-7

The surge of fast-spreading SARS-CoV-2 mutated variants highlights the need for fast, broad-spectrum strategies to counteract viral infections. In this work, we report a physical barrier against SARS-CoV-2 infection based on an inhalable bioadhesive hydrogel, named spherical hydrogel inhalation for enhanced lung defence (SHIELD). Conveniently delivered via a dry powder inhaler, SHIELD particles form a dense hydrogel network that coats the airway, enhancing the diffusional barrier properties and restricting virus penetration. SHIELD's protective effect is first demonstrated in mice against two SARS-CoV-2 pseudo-viruses with different mutated spike proteins. Strikingly, in African green monkeys, a single SHIELD inhalation provides protection for up to 8 hours, efficiently reducing infection by the SARS-CoV-2 WA1 and B.1.617.2 (Delta) variants. Notably, SHIELD is made with food-grade materials and does not affect normal respiratory functions. This approach could offer additional protection to the population against SARS-CoV-2 and other respiratory pathogens.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
  • 4
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?