Cytokine RNA In Situ Hybridization Permits Individualized Molecular Phenotyping in Biopsies of Psoriasis and Atopic Dermatitis
Wang, A;Fogel, A;Murphy, M;Panse, G;McGeary, M;McNiff, J;Bosenberg, M;Vesely, M;Cohen, J;Ko, C;King, B;Damsky, W;
| DOI: 10.1016/j.xjidi.2021.100021
Detection of individual cytokines in routine biopsies from patients with inflammatory skin diseases has the potential to personalize diagnosis and treatment selection, but this approach has been limited by technical feasibility. We evaluate whether a chromogen-based RNA in situ hybridization approach can be used to detect druggable cytokines in psoriasis and atopic dermatitis. A series of psoriasis (n = 20) and atopic dermatitis (n = 26) biopsies were stained using RNA in situ hybridization for IL4, IL12B (IL-12/23 p40), IL13, IL17A, IL17F, IL22, IL23A (IL-23 p19), IL31, and TNF (TNF-α). NOS2 and IFNG, canonical psoriasis biomarkers, were also included. All 20 of the psoriasis cases were positive for IL17A, which tended to be the predominant cytokine, although some cases had relatively higher levels of IL12B, IL17F, or IL23A. The majority of cytokine expression in psoriasis was epidermal. A total of 22 of 26 atopic dermatitis cases were positive for IL13, also at varying levels; a subset of cases had significant IL4, IL22, or IL31 expression. Patterns were validated in independent bulk RNA-sequencing and single-cell RNA-sequencing datasets. Overall, RNA in situ hybridization for cytokines appears highly specific with virtually no background staining and may allow for individualized evaluation of treatment-relevant cytokine targets in biopsies from patients with inflammatory skin disorders.
Journal of medical virology
Chen, Q;Huang, XY;Liu, Y;Sun, MX;Ji, B;Zhou, C;Chi, H;Zhang, RR;Luo, D;Tian, Y;Li, XF;Zhao, H;Qin, CF;
PMID: 35322439 | DOI: 10.1002/jmv.27735
SARS-CoV-2 has evolved into a panel of variants of concern (VOCs) and constituted a sustained threat to global health. The wildtype (WT) SARS-CoV-2 isolates fail to infect mice, while the Beta variant, one of the VOCs, has acquired the capability to infect standard laboratory mice, raising a spreading risk of SARS-CoV-2 from humans to mice. However, the infectivity and pathogenicity of other VOCs in mice remain not fully understood. In this study, we systematically investigated the infectivity and pathogenicity of three VOCs, Alpha, Beta, and Delta, in mice in comparison with two well-understood SARS-CoV-2 mouse-adapted strains, MASCp6 and MASCp36, sharing key mutations in the receptor-binding domain (RBD) with Alpha or Beta, respectively. Our results showed that the Beta variant had the strongest infectivity and pathogenicity among the three VOCs, while the Delta variant only caused limited replication and mild pathogenic changes in the mouse lung, which is much weaker than what the Alpha variant did. Meanwhile, Alpha showed comparable infectivity in lungs in comparison with MASCp6, and Beta only showed slightly lower infectivity in lungs when compared with MASCp36. These results indicated that all three VOCs have acquired the capability to infect mice, highlighting the ongoing spillover risk of SARS-CoV-2 from humans to mice during the continued evolution of SARS-CoV-2, and that the key amino acid mutations in the RBD of mouse-adapted strains may be referenced as an early-warning indicator for predicting the spillover risk of newly emerging SARS-CoV-2 variants.
Zhang, X;Li, X;Wang, Y;Chen, Y;Hu, Y;Guo, C;Yu, Z;Xu, P;Ding, Y;Mi, QS;Wu, J;Gu, J;Shi, Y;
PMID: 35801590 | DOI: 10.1172/jci.insight.150223
Psoriasis is a chronic, inflammatory skin disease, frequently associated with dyslipidemia. Lipid disturbance in psoriasis affects both circulatory system and cutaneous tissue. Epidermal Langerhans cells (LCs) are tissue-resident DCs that maintain skin immune surveillance and mediate various cutaneous disorders, including psoriasis. However, the role of LCs in psoriasis development and their lipid metabolic alternation remains unclear. Here, we demonstrate that epidermal LCs of psoriasis patients enlarge with longer dendrites and possess elevated IL-23p19 mRNA and a higher level of neutral lipids when compared with normal LCs of healthy individuals. Accordantly, epidermal LCs from imiquimod-induced psoriasis-like dermatitis in mice display overmaturation, enhanced phagocytosis, and excessive secretion of IL-23. Remarkably, these altered immune properties in lesional LCs are tightly correlated with elevated neutral lipid levels. Moreover, the increased lipid content of psoriatic LCs might result from impaired autophagy of lipids. Bulk RNA-Seq analysis identifies dysregulated genes involved in lipid metabolism, autophagy, and immunofunctions in murine LCs. Overall, our data suggest that dysregulated lipid metabolism influences LC immunofunction, which contributes to the development of psoriasis, and therapeutic manipulation of this metabolic process might provide an effective measurement for psoriasis.
Lu, Y;Chen, X;Liu, X;Shi, Y;Wei, Z;Feng, L;Jiang, Q;Ye, W;Sasaki, T;Fukunaga, K;Ji, Y;Han, F;Lu, YM;
PMID: 36588318 | DOI: 10.1080/15548627.2022.2162244
Cognitive impairment caused by systemic chemotherapy is a critical question that perplexes the effective implementation of clinical treatment, but related molecular events are poorly understood. Herein, we show that bortezomib exposure leads to microglia activation and cognitive impairment, this occurs along with decreased nuclear translocation of TFEB (transcription factor EB), which is linked to macroautophagy/autophagy disorder, STAT3 (signal transducer and activator of transcription 3) phosphorylation and IL23A (interleukin 23 subunit alpha) expression. Pharmacological enhancement of TFEB nuclear translocation by digoxin restores lysosomal function and reduces STAT3-dependent endothelial IL23A secretion. As a consequence, we found that brain endothelial-specific ablation of Il23a ameliorated both microglia activation and cognitive dysfunction. Thus, the endothelial TFEB-STAT3-IL23A axis in the brain represents a critical cellular event for initiating bortezomib-mediated aberrant microglial activation and synapse engulfment. Our results suggest the reversal of TFEB nuclear translocation may provide a novel therapeutic approach to prevent symptoms of cognitive dysfunction during clinical use of bortezomib.Abbreviations: AAV: adeno-associated virus; BBB: blood-brain barrier; BTZ: bortezomib; DG: digoxin; DGs: dentate gyrus; DLG4/PSD95: discs large MAGUK scaffold protein 4; HBMECs: human brain microvascular endothelial cells; HP: hippocampus; IL23A: interleukin 23 subunit alpha; MBVECs: mouse brain vascular endothelial cells; mPFC: medial prefrontal cortex; NORT: novel object recognition test; OLT: object location test; PLX5622: 6-fluoro-N-([5-fluoro-2-methoxypyridin-3-yl]methyl)-5-(5-methyl-1H-pyrrolo[2,3-b]pyridin-3- yl)methyl; PPP3/calcineurin: protein phosphatase 3; SBEs: STAT3 binding elements; shRNA: small hairpin RNA; SLC17A7/VGLUT1: solute carrier family 17 member 7; SLC32A1/VGAT: solute carrier family 32 member 1; STAT3: signal transducer and activator of transcription 3, TFEB: transcription factor EB; Ub: ubiquitin.
Schaller, T;Märkl, B;Claus, R;Sholl, L;Hornick, JL;Giannetti, MP;Schweizer, L;Mann, M;Castells, M;
PMID: 35340030 | DOI: 10.1111/all.15293