Wang L, Huang J, Moore DC, Zuo C, Wu Q, Xie L, von der Mark K, Yuan X, Chen D, Warman ML, Ehrlich MG, Yang W.
PMID: 28983104 | DOI: 10.1038/s41598-017-12767-9
Transdifferentiation of hypertrophic chondrocytes into bone-forming osteoblasts has been reported, yet the underlying molecular mechanism remains incompletely understood. SHP2 is an ubiquitously expressed cytoplasmic protein tyrosine phosphatase. SHP2 loss-of-function mutations in chondroid cells are linked to metachondromatosis in humans and mice, suggesting a crucial role for SHP2 in the skeleton. However, the specific role of SHP2 in skeletal cells has not been elucidated. To approach this question, we ablated SHP2 in collagen 2α1(Col2α1)-Cre- and collagen 10α1(Col10α1)-Cre-expressing cells, predominantly proliferating and hypertrophic chondrocytes, using "Cre-loxP"-mediated gene excision. Mice lacking SHP2 in Col2α1-Cre-expressing cells die at mid-gestation. Postnatal SHP2 ablation in the same cell population caused dwarfism, chondrodysplasia and exostoses. In contrast, mice in which SHP2 was ablated in the Col10α1-Cre-expressing cells appeared normal but were osteopenic. Further mechanistic studies revealed that SHP2 exerted its influence partly by regulating the abundance of SOX9 in chondrocytes. Elevated and sustained SOX9 in SHP2-deficient hypertrophic chondrocytes impaired their differentiation to osteoblasts and impaired endochondral ossification. Our study uncovered an important role of SHP2 in bone development and cartilage homeostasis by influencing the osteogenic differentiation of hypertrophic chondrocytes and provided insight into the pathogenesis and potential treatment of skeletal diseases, such as osteopenia and osteoporosis.
Lotun, A;Li, D;Xu, H;Su, Q;Tuncer, S;Sanmiguel, J;Mooney, M;Baer, CE;Ulbrich, R;Eyles, SJ;Strittmatter, L;Hayward, LJ;Gessler, DJ;Gao, G;
PMID: 37149081 | DOI: 10.1016/j.pneurobio.2023.102460
Myelinating oligodendrocytes are essential for neuronal communication and homeostasis of the central nervous system (CNS). One of the most abundant molecules in the mammalian CNS is N-acetylaspartate (NAA), which is catabolized into L-aspartate and acetate by the enzyme aspartoacylase (ASPA) in oligodendrocytes. The resulting acetate moiety is thought to contribute to myelin lipid synthesis. In addition, affected NAA metabolism has been implicated in several neurological disorders, including leukodystrophies and demyelinating diseases such as multiple sclerosis. Genetic disruption of ASPA function causes Canavan disease, which is hallmarked by increased NAA levels, myelin and neuronal loss, large vacuole formation in the CNS, and early death in childhood. Although NAA's direct role in the CNS is inconclusive, in peripheral adipose tissue, NAA-derived acetate has been found to modify histones, a mechanism known to be involved in epigenetic regulation of cell differentiation. We hypothesize that a lack of cellular differentiation in the brain contributes to the disruption of myelination and neurodegeneration in diseases with altered NAA metabolism, such as Canavan disease. Our study demonstrates that loss of functional Aspa in mice disrupts myelination and shifts the transcriptional expression of neuronal and oligodendrocyte markers towards less differentiated stages in a spatiotemporal manner. Upon re-expression of ASPA, these oligodendrocyte and neuronal lineage markers are either improved or normalized, suggesting that NAA breakdown by Aspa plays an essential role in the maturation of neurons and oligodendrocytes. Also, this effect of ASPA re-expression is blunted in old mice, potentially due to limited ability of neuronal, rather than oligodendrocyte, recovery.
WNT16 is Robustly Increased by Oncostatin M in Mouse Calvarial Osteoblasts and Acts as a Negative Feedback Regulator of Osteoclast Formation Induced by Oncostatin M
Journal of inflammation research
Henning, P;Movérare-Skrtic, S;Westerlund, A;Chaves de Souza, PP;Floriano-Marcelino, T;Nilsson, KH;El Shahawy, M;Ohlsson, C;Lerner, UH;
PMID: 34566421 | DOI: 10.2147/JIR.S323435
Bone loss is often observed adjacent to inflammatory processes. The WNT signaling pathways have been implicated as novel regulators of both immune responses and bone metabolism. WNT16 is important for cortical bone mass by inhibiting osteoclast differentiation, and we have here investigated the regulation of WNT16 by several members of the pro-inflammatory gp130 cytokine family.The expression and regulation of Wnt16 in primary murine cells were studied by qPCR, scRNAseq and in situ hybridization. Signaling pathways were studied by siRNA silencing. The importance of oncostatin M (OSM)-induced WNT16 expression for osteoclastogenesis was studied in cells from Wnt16-deficient and wild-type mice.We found that IL-6/sIL-6R and OSM induce the expression of Wnt16 in primary mouse calvarial osteoblasts, with OSM being the most robust stimulator. The induction of Wnt16 by OSM was dependent on gp130 and OSM receptor (OSMR), and downstream signaling by the SHC1/STAT3 pathway, but independent of ERK. Stimulation of the calvarial cells with OSM resulted in enhanced numbers of mature, oversized osteoclasts when cells were isolated from Wnt16 deficient mice compared to cells from wild-type mice. OSM did not affect Wnt16 mRNA expression in bone marrow cell cultures, explained by the finding that Wnt16 and Osmr are expressed in distinctly different cells in bone marrow, nor was osteoclast differentiation different in OSM-stimulated bone marrow cell cultures isolated from Wnt16-/- or wild-type mice. Furthermore, we found that Wnt16 expression is substantially lower in cells from bone marrow compared to calvarial osteoblasts.These findings demonstrate that OSM is a robust stimulator of Wnt16 mRNA in calvarial osteoblasts and that WNT16 acts as a negative feedback regulator of OSM-induced osteoclast formation in the calvarial bone cells, but not in the bone marrow.
Nikitin, P;Musina, G;Pekov, S;Kuzin, A;Popov, I;Belyaev, A;Kobyakov, G;Usachev, D;Nikolaev, V;Mikhailov, V;
| DOI: 10.3390/cancers15010145
Diffuse gliomas continue to be an important problem in neuro-oncology. To solve it, studies have considered the issues of molecular pathogenesis from the intratumoral heterogeneity point. Here, we carried out a comparative dynamic analysis of the different cell populations’ content in diffuse gliomas of different molecular profiles and grades, considering the cell populations’ functional properties and the relationship with patient survival, using flow cytometry, immunofluorescence, multiparametric fluorescent in situ hybridization, polymerase chain reaction, and cultural methods. It was shown that an increase in the IDH-mutant astrocytomas and oligodendrogliomas malignancy is accompanied by an increase in stem cells’ proportion and mesenchymal cell populations’ appearance arising from oligodendrocyte-progenitor-like cells with cell plasticity and cells’ hypoxia response programs’ activation. In glioblastomas, malignancy increase is accompanied by an increase in both stem and definitive cells with mesenchymal differentiation, while proneuronal glioma stem cells are the most likely the source of mesenchymal glioma stem cells, which, in hypoxic conditions, further give rise to mesenchymal-like cells. Clinical confirmation was a mesenchymal-like cell and mesenchymal glioma stem cell number, and the hypoxic and plastic molecular programs’ activation degree had a significant effect on relapse-free and overall survival. In general, we built a multi-vector model of diffuse gliomas’ pathogenetic tracing up to the practical plane.
RSPO3 is important for trabecular bone and fracture risk in mice and humans
Nilsson, KH;Henning, P;Shahawy, ME;Nethander, M;Andersen, TL;Ejersted, C;Wu, J;Gustafsson, KL;Koskela, A;Tuukkanen, J;Souza, PPC;Tuckermann, J;Lorentzon, M;Ruud, LE;Lehtimäki, T;Tobias, JH;Zhou, S;Lerner, UH;Richards, JB;Movérare-Skrtic, S;Ohlsson, C;
PMID: 34389713 | DOI: 10.1038/s41467-021-25124-2
With increasing age of the population, countries across the globe are facing a substantial increase in osteoporotic fractures. Genetic association signals for fractures have been reported at the RSPO3 locus, but the causal gene and the underlying mechanism are unknown. Here we show that the fracture reducing allele at the RSPO3 locus associate with increased RSPO3 expression both at the mRNA and protein levels, increased trabecular bone mineral density and reduced risk mainly of distal forearm fractures in humans. We also demonstrate that RSPO3 is expressed in osteoprogenitor cells and osteoblasts and that osteoblast-derived RSPO3 is the principal source of RSPO3 in bone and an important regulator of vertebral trabecular bone mass and bone strength in adult mice. Mechanistic studies revealed that RSPO3 in a cell-autonomous manner increases osteoblast proliferation and differentiation. In conclusion, RSPO3 regulates vertebral trabecular bone mass and bone strength in mice and fracture risk in humans.
Wang L, Huang J, Moore DC, Song Y, Ehrlich MG, Yang W.
PMID: 30471432 | DOI: 10.1016/j.bone.2018.11.014
SHP2 is a ubiquitously expressed protein tyrosine phosphatase, which is involved in many signaling pathways to regulate the skeletal development. In endochondral ossification, SHP2 is known to modify the osteogenic fate of osteochondroprogenitors and to impair the osteoblastic transdifferentiation of hypertrophic chondrocytes. However, how SHP2 regulates osteoblast differentiation in intramembranous ossification remains incompletely understood. To address this question, we generated a mouse model to ablate SHP2 in the Prrx1-expressing mesenchymal progenitors by using "Cre-loxP"-mediated gene excision and examined the development of calvarial bone, in which the main process of bone formation is intramembranous ossification. Phenotypic characterization showed that SHP2 mutants have severe defects in calvarial bone formation. Cell lineage tracing and in situ hybridization data showed less osteoblast differentiation of mesenchymal cells and reduced osteogenic genes expression, respectively. Further mechanistic studies revealed enhanced TGFβ and suppressed BMP2 signaling in SHP2 ablated mesenchymal progenitors and their derivatives. Our study uncovered the critical role of SHP2 in osteoblast differentiation through intramembranous ossification and might provide a potential target to treat craniofacial skeleton disorders.
Miura Y, Ota S, Peterlin M, McDevitt G, Kanazawa S.
| DOI: 10.1002/jbm4.10132
Specific MHC class II genes result in a high susceptibility to rheumatoid arthritis (RA), with co‐stimulatory molecules working together with MHC class II during the progression of the disease. To elucidate the involvement of the B7.1 co‐stimulatory molecule in RA, we analyzed the phenotype of B7.1 transgenic (named D1BC) mice and the sequential differentiation of synovial fibroblasts (SFs) by studying the expression of chondrogenic and osteogenic lineage markers together with lineage tracing experiment using B7.1 transgene in vivo. The B7.1 transgene was driven by a collagen type II (CII) promoter and enhancer in the D1BC mouse. A low‐dose of bovine CII (bCII) was used to induce chronic articular inflammation with interstitial pneumonitis. Joint damage was analyzed by histopathological examination and computed tomography. B7.1 was expressed in articular cartilage and SFs of D1BC mice. Chronic inflammatory arthritis in bCII‐D1BC mouse shared common features with those found in patients with RA, such as pannus formation, bone destruction, osteoporosis, and joint ankylosis. A subpopulation of SFs (Runx2+, Sox9+, Col10a1+, Osx+ and CX‐) in the pannus was classified as osteochondrogenic lineage rather than mesenchymal stromal lineage. These cells underwent differentiation into osteogenic lineage via hypertrophic chondrocytes at the end of the chronic phase. The ectopic expression of B7.1 in chondrocytes and SFs leads to an increased susceptibility to chronic inflammatory arthritis and subsequent new bone formation, reminiscent of ankylosis. The regulation of cartilage remodeling in pannus tissue is an important consideration in the treatment of RA.
Variation in phenotypes from a Bmp-Gata3 genetic pathway is modulated by Shh signaling
Swartz, ME;Lovely, CB;Eberhart, JK;
PMID: 34033651 | DOI: 10.1371/journal.pgen.1009579
We sought to understand how perturbation of signaling pathways and their targets generates variable phenotypes. In humans, GATA3 associates with highly variable defects, such as HDR syndrome, microsomia and choanal atresia. We previously characterized a zebrafish point mutation in gata3 with highly variable craniofacial defects to the posterior palate. This variability could be due to residual Gata3 function, however, we observe the same phenotypic variability in gata3 null mutants. Using hsp:GATA3-GFP transgenics, we demonstrate that Gata3 function is required between 24 and 30 hpf. At this time maxillary neural crest cells fated to generate the palate express gata3. Transplantation experiments show that neural crest cells require Gata3 function for palatal development. Via a candidate approach, we determined if Bmp signaling was upstream of gata3 and if this pathway explained the mutant's phenotypic variation. Using BRE:d2EGFP transgenics, we demonstrate that maxillary neural crest cells are Bmp responsive by 24 hpf. We find that gata3 expression in maxillary neural crest requires Bmp signaling and that blocking Bmp signaling, in hsp:DN-Bmpr1a-GFP embryos, can phenocopy gata3 mutants. Palatal defects are rescued in hsp:DN-Bmpr1a-GFP;hsp:GATA3-GFP double transgenic embryos, collectively demonstrating that gata3 is downstream of Bmp signaling. However, Bmp attenuation does not alter phenotypic variability in gata3 loss-of-function embryos, implicating a different pathway. Due to phenotypes observed in hypomorphic shha mutants, the Sonic Hedgehog (Shh) pathway was a promising candidate for this pathway. Small molecule activators and inhibitors of the Shh pathway lessen and exacerbate, respectively, the phenotypic severity of gata3 mutants. Importantly, inhibition of Shh can cause gata3 haploinsufficiency, as observed in humans. We find that gata3 mutants in a less expressive genetic background have a compensatory upregulation of Shh signaling. These results demonstrate that the level of Shh signaling can modulate the phenotypes observed in gata3 mutants.
Voronova A, Yuzwa SA, Wang BS, Zahr S, Syal C, Wang J, Kaplan DR, Miller FD.
PMID: 28472653 | DOI: 10.1016/j.neuron.2017.04.018
During development, newborn interneurons migrate throughout the embryonic brain. Here, we provide evidence that these interneurons act in a paracrine fashion to regulate developmental oligodendrocyte formation. Specifically, we show that medial ganglionic eminence (MGE) interneurons secrete factors that promote genesis of oligodendrocytes from glially biased cortical precursors in culture. Moreover, when MGE interneurons are genetically ablated in vivo prior to their migration, this causes a deficit in cortical oligodendrogenesis. Modeling of the interneuron-precursor paracrine interaction using transcriptome data identifies the cytokine fractalkine as responsible for the pro-oligodendrocyte effect in culture. This paracrine interaction is important in vivo, since knockdown of the fractalkine receptor CX3CR1 in embryonic cortical precursors, or constitutive knockout of CX3CR1, causes decreased numbers of oligodendrocyte progenitor cells (OPCs) and oligodendrocytes in the postnatal cortex. Thus, in addition to their role in regulating neuronal excitability, interneurons act in a paracrine fashion to promote the developmental genesis of oligodendrocytes.
Kadur Lakshminarasimha Murthy, P;Sontake, V;Tata, A;Kobayashi, Y;Macadlo, L;Okuda, K;Conchola, AS;Nakano, S;Gregory, S;Miller, LA;Spence, JR;Engelhardt, JF;Boucher, RC;Rock, JR;Randell, SH;Tata, PR;
PMID: 35355018 | DOI: 10.1038/s41586-022-04541-3
Mapping the spatial distribution and molecular identity of constituent cells is essential for understanding tissue dynamics in health and disease. We lack a comprehensive map of human distal airways, including the terminal and respiratory bronchioles (TRBs), which are implicated in respiratory diseases1-4. Here, using spatial transcriptomics and single-cell profiling of microdissected distal airways, we identify molecularly distinct TRB cell types that have not-to our knowledge-been previously characterized. These include airway-associated LGR5+ fibroblasts and TRB-specific alveolar type-0 (AT0) cells and TRB secretory cells (TRB-SCs). Connectome maps and organoid-based co-cultures reveal that LGR5+ fibroblasts form a signalling hub in the airway niche. AT0 cells and TRB-SCs are conserved in primates and emerge dynamically during human lung development. Using a non-human primate model of lung injury, together with human organoids and tissue specimens, we show that alveolar type-2 cells in regenerating lungs transiently acquire an AT0 state from which they can differentiate into either alveolar type-1 cells or TRB-SCs. This differentiation programme is distinct from that identified in the mouse lung5-7. Our study also reveals mechanisms that drive the differentiation of the bipotent AT0 cell state into normal or pathological states. In sum, our findings revise human lung cell maps and lineage trajectories, and implicate an epithelial transitional state in primate lung regeneration and disease.
Dai J, Yang L, Xu T, Si L, Cui C, Sheng X, Chi Z, Mao L, Lian B, Tang B, Bai X, Zhou L, Li S, Wang X, Yan X, Kong Y, Guo J
PMID: 32226509 | DOI: 10.7150/jca.43010
Purpose: Polymorphisms of genes in the platelet-derived growth factor (PDGF) signaling pathway have been found to predict cutaneous melanoma (CM) survival, but their clinical effects in acral melanoma (AM) patients have not been explored. The aim of this study was to characterize the functional effect of the tag single-nucleotide polymorphism (SNP) rs2228230:C>T and assess its association with clinical outcomes in AM patients. Methods: The effect of rs2228230:C>T on mRNA structures and codon usage values were evaluated using in silico analyses. PDGF receptor alpha (PDGFRA) expression vectors with the rs2228230:C or rs2228230:T allele were constructed to evaluate the expression and signaling activity of PDGFRA. The expression of PDGFRA in AM samples was measured using in situ RNAscope hybridization and immunohistochemical staining. The association of the rs2228230 genotype with survival was analyzed in two independent AM cohorts. Results: In silico analyses indicated that the rs2228230:T allele increases the minimum free energy and reduces synonymous codon usage. The rs2228230:T allele decreased the expression of PDGFRA by reducing the stability of its mRNA and protein as well as the signaling activity of the MAPK and PI3K/AKT pathways. PDGFRA mRNA and protein expression was significantly reduced in AM tissues with the rs2228230:T allele. The progression-free survival and overall survival of AM patients with the rs2228230:T allele were significantly longer than those of patients with the CC genotype. Conclusion: Our study indicated that rs2228230:T can reduce the expression of PDGFRA and downstream signaling activity and is associated with better survival in AM patients.
Pentraxin 3 is a stromally-derived biomarker for detection of pancreatic ductal adenocarcinoma
Goulart, MR;Watt, J;Siddiqui, I;Lawlor, RT;Imrali, A;Hughes, C;Saad, A;ChinAleong, J;Hurt, C;Cox, C;Salvia, R;Mantovani, A;Crnogorac-Jurcevic, T;Mukherjee, S;Scarpa, A;Allavena, P;Kocher, HM;
PMID: 34188166 | DOI: 10.1038/s41698-021-00192-1
Pancreatic ductal adenocarcinoma (PDAC), characterized by dense desmoplastic stroma laid down by pancreatic stellate cells (PSC), has no reliable diagnostic biomarkers for timely detection. A multi-center cohort of PDAC patients and controls (chronic pancreatitis, intra-ductal papillary neoplasms, gallstones and otherwise healthy) donated serum in an ethically approved manner. Serum PTX3 above 4.34 ng/mL has a higher sensitivity (86%, 95% confidence interval (CI): 65-97%) and specificity (86%, 95% CI: 79-91%), positive predictive value (97%) and likelihood ratio (6.05), and is superior when compared to serum CA19-9 and CEA for detection of PDAC. In vitro and ex vivo analyses of PTX3, in human PDAC samples, PSCs, cell lines and transgenic mouse model for PDAC, suggest that PTX3 originates from stromal cells, mainly PSC. In activated PSC, PTX3 secretion could be downregulated by rendering PSC quiescent using all-trans-retinoic acid (ATRA). PTX3 organizes hyaluronan in conjunction with tumor necrosis factor-stimulated gene 6 (TSG-6) and facilitates stellate and cancer cell invasion. In SCALOP clinical trial (ISRCTN96169987) testing chemo-radiotherapy without stromal targeting, PTX3 had no prognostic or predictive role. However, in STARPAC clinical trial (NCT03307148), stromal modulation by ATRA even at first dose is accompanied with serum PTX3 response in patients who later go on to demonstrate disease control but not those in whom the disease progresses. PTX3 is a putative stromally-derived biomarker for PDAC which warrants further testing in prospective, larger, multi-center cohorts and within clinical trials targeting stroma.