ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Cell.
2018 Nov 15
Brandt C, Nolte H, Henschke S, Engström Ruud L, Awazawa M, Morgan DA, Gabel P, Sprenger HG, Hess ME, Günther S, Langer T, Rahmouni K, Fenselau H, Krüger M, Brüning JC.
PMID: 30445039 | DOI: 10.1016/j.cell.2018.10.015
Adaptation of liver to the postprandial state requires coordinated regulation of protein synthesis and folding aligned with changes in lipid metabolism. Here we demonstrate that sensory food perception is sufficient to elicit early activation of hepatic mTOR signaling, Xbp1 splicing, increased expression of ER-stress genes, and phosphatidylcholine synthesis, which translate into a rapid morphological ER remodeling. These responses overlap with those activated during refeeding, where they are maintained and constantly increased upon nutrient supply. Sensory food perception activates POMC neurons in the hypothalamus, optogenetic activation of POMC neurons activates hepatic mTOR signaling and Xbp1 splicing, whereas lack of MC4R expression attenuates these responses to sensory food perception. Chemogenetic POMC-neuron activation promotes sympathetic nerve activity (SNA) subserving the liver, and norepinephrine evokes the same responses in hepatocytes in vitro and in liver in vivo as observed upon sensory food perception. Collectively, our experiments unravel that sensory food perception coordinately primes postprandial liver ER adaption through a melanocortin-SNA-mTOR-Xbp1s axis.
Neurochem Int.
2019 Feb 21
Macpherson T, Mizoguchi H, Yamanaka A, Hikida T.
PMID: 30797970 | DOI: 10.1016/j.neuint.2019.02.011
The ventral pallidum (VP) is a critical component of the basal ganglia neurocircuitry regulating learning and decision making; however, its precise role in controlling associative learning of environmental stimuli conditioned to appetitive or aversive outcomes is still unclear. Here, we investigated the expression of preproenkephalin, a polypeptide hormone previously shown to be expressed in nucleus accumbens neurons controlling aversive learning, within GABAergic and glutamatergic VP neurons. Next, we explored the behavioral consequences of chemicogenetic inhibition or excitation of preproenkephalin-expressing VP neurons on associative learning of reward- or aversion-paired stimuli in autoshaping and inhibitory avoidance tasks, respectively. We reveal for the first time that preproenkephalin is expressed predominantly in GABAergic rather than glutamatergic VP neurons, and that excitation of these preproenkephalin-expressing VP neurons was sufficient to impair inhibitory avoidance learning. These findings indicate the necessity for inhibition of preproenkephalin-expressing VP neurons for avoidance learning, and suggest these neurons as a potential therapeutic target for psychiatric disorders associated with maladaptive aversive learning.
Neuron
2022 Dec 21
Vieira, JR;Shah, B;Dupraz, S;Paredes, I;Himmels, P;Schermann, G;Adler, H;Motta, A;Gärtner, L;Navarro-Aragall, A;Ioannou, E;Dyukova, E;Bonnavion, R;Fischer, A;Bonanomi, D;Bradke, F;Ruhrberg, C;Ruiz de Almodóvar, C;
PMID: 36549270 | DOI: 10.1016/j.neuron.2022.12.005
iScience
2022 Dec 22
O'Leary, TP;Kendrick, RM;Bristow, BN;Sullivan, KE;Wang, L;Clements, J;Lemire, AL;Cembrowski, MS;
PMID: 36425768 | DOI: 10.1016/j.isci.2022.105497
Nature neuroscience
2022 Sep 01
Georgiou, P;Zanos, P;Mou, TM;An, X;Gerhard, DM;Dryanovski, DI;Potter, LE;Highland, JN;Jenne, CE;Stewart, BW;Pultorak, KJ;Yuan, P;Powels, CF;Lovett, J;Pereira, EFR;Clark, SM;Tonelli, LH;Moaddel, R;Zarate, CA;Duman, RS;Thompson, SM;Gould, TD;
PMID: 36042309 | DOI: 10.1038/s41593-022-01146-x
Nature communications
2022 Aug 12
Teng, S;Zhen, F;Wang, L;Schalchli, JC;Simko, J;Chen, X;Jin, H;Makinson, CD;Peng, Y;
PMID: 35961989 | DOI: 10.1038/s41467-022-32461-3
Molecular psychiatry
2022 Aug 26
Chen, Z;Chen, G;Zhong, J;Jiang, S;Lai, S;Xu, H;Deng, X;Li, F;Lu, S;Zhou, K;Li, C;Liu, Z;Zhang, X;Zhu, Y;
PMID: 36028570 | DOI: 10.1038/s41380-022-01742-0
Scientific reports
2022 May 24
Lee, EJ;Saraiva, LR;Hanchate, NK;Ye, X;Asher, G;Ho, J;Buck, LB;
PMID: 35610316 | DOI: 10.1038/s41598-022-12663-x
Nature
2017 May 17
Chung S, Weber F, Zhong P, Tan CL, Nguyen TN, Beier KT, Hörmann N, Chang WC, Zhang Z, Do JP, Yao S, Krashes MJ, Tasic B, Cetin A, Zeng H, Knight ZA, Luo L, Dan Y.
PMID: 28514446 | DOI: 10.1038/nature22350
In humans and other mammalian species, lesions in the preoptic area of the hypothalamus cause profound sleep impairment, indicating a crucial role of the preoptic area in sleep generation. However, the underlying circuit mechanism remains poorly understood. Electrophysiological recordings and c-Fos immunohistochemistry have shown the existence of sleep-active neurons in the preoptic area, especially in the ventrolateral preoptic area and median preoptic nucleus. Pharmacogenetic activation of c-Fos-labelled sleep-active neurons has been shown to induce sleep. However, the sleep-active neurons are spatially intermingled with wake-active neurons, making it difficult to target the sleep neurons specifically for circuit analysis. Here we identify a population of preoptic area sleep neurons on the basis of their projection target and discover their molecular markers. Using a lentivirus expressing channelrhodopsin-2 or a light-activated chloride channel for retrograde labelling, bidirectional optogenetic manipulation, and optrode recording, we show that the preoptic area GABAergic neurons projecting to the tuberomammillary nucleus are both sleep active and sleep promoting. Furthermore, translating ribosome affinity purification and single-cell RNA sequencing identify candidate markers for these neurons, and optogenetic and pharmacogenetic manipulations demonstrate that several peptide markers (cholecystokinin, corticotropin-releasing hormone, and tachykinin 1) label sleep-promoting neurons. Together, these findings provide easy genetic access to sleep-promoting preoptic area neurons and a valuable entry point for dissecting the sleep control circuit.
eNeuro
2018 Jan 24
McCullough KM, Morrison FG, Hartmann J, Carlezon WA, Ressler KJ.
PMID: - | DOI: 10.1523/ENEURO.0010-18.2018
Molecular identification and characterization of fear controlling circuitries is a promising path towards developing targeted treatments of fear-related disorders. Three-color in situ hybridization analysis was used to determine whether somatostatin (Sst), neurotensin (Nts), corticotropin releasing factor (Crf), tachykinin 2 (Tac2), protein kinase c delta (Prkcd), and dopamine receptor 2 (Drd2) mRNA co-localize in male mouse amygdala neurons. Expression and co-localization was examined across capsular (CeC), lateral (CeL), and medial (CeM) compartments of the central amygdala. The greatest expression of Prkcd and Drd2 were found in CeC and CeL. Crf was expressed primarily in CeL while Sst, Nts, and Tac2 expressing neurons were distributed between CeL and CeM. High levels of co-localization were identified between Sst, Nts, Crf, and Tac2 within the CeL while little co-localization was detected between any mRNAs within the CeM. These findings provide a more detailed understanding of the molecular mechanisms that regulate the development and maintenance of fear and anxiety behaviors.
Significance Statement Functional and behavioral analysis of central amygdala microcircuits has yielded significant insights into the role of this nucleus in fear and anxiety related behaviors. However, precise molecular and locational description of examined populations is lacking. This publication provides a quantified regionally precise description of the expression and co-expression of six frequently examined central amygdala population markers. Most revealing, within the most commonly examined region, the posterior CeL, four of these markers are extensively co-expressed suggesting the potential for experimental redundancy. This data clarifies circuit interaction and function and will increase relevance and precision of future cell-type specific reports.
Endocrinology
2022 Jan 01
Téblick, A;De Bruyn, L;Van Oudenhove, T;Vander Perre, S;Pauwels, L;Derde, S;Langouche, L;Van den Berghe, G;
PMID: 34698826 | DOI: 10.1210/endocr/bqab222
Nature communications
2021 Jun 11
Luchsinger, JR;Fetterly, TL;Williford, KM;Salimando, GJ;Doyle, MA;Maldonado, J;Simerly, RB;Winder, DG;Centanni, SW;
PMID: 34117229 | DOI: 10.1038/s41467-021-23674-z
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com